机器学习---PCA案例

1. PCA

python 复制代码
import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits

def pca(dataMat,topNfeat=9999999):
    meanVals=np.mean(dataMat,axis=0)
    # 去除平均值,实现数据中心化
    meanRemoved=dataMat-meanVals 
    covMat=np.cov(meanRemoved,rowvar=0)
    # 计算矩阵的特征值个特征向量
    eigVals,eigVects=np.linalg.eig(np.mat(covMat))
    eigValInd=np.argsort(eigVals)
    # 从大到小对N个值排序
    eigValInd=eigValInd[:-(topNfeat+1):-1]
    redEigVects=eigVects[:,eigValInd]
    # 将数据转换到新空间
    lowDDataMat=meanRemoved*redEigVects
    reconMat=(lowDDataMat*redEigVects.T)+meanVals
    return lowDDataMat,reconMat

dataMat = np.array([[1,2,3], [4,2,1], [3,2,1]])
X = load_digits().data[:, :]

lowDDataMat,reconMat = pca(X,topNfeat=2)
print(lowDDataMat)
print(reconMat)
plt.scatter(lowDDataMat[:,0].tolist(), lowDDataMat[:,1].tolist(),c = 'r',marker = 'o')

2个参数:一个参数是用于进行PCA操作的数据集,第二个参数是可选参数,即应用N个特征,首

先计算并减去原始数据集的平均值,然后计算协方差矩阵及其特征值,然后利用argsort函数对特征

值进行从小到大排序,根据特征值排序的逆序就可以得到最大的N个向量,这些向量将构成后面对

数据进行转换的矩阵,该矩阵则利用N个特征将原始数据转换到新空间中,最后原始数据被重构后

返回,同时,降维之后的数据集也被返回。

相关推荐
小鸡吃米…20 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫21 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)21 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan21 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维21 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS21 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd21 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟1 天前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然1 天前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~1 天前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1