机器学习---PCA案例

1. PCA

python 复制代码
import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits

def pca(dataMat,topNfeat=9999999):
    meanVals=np.mean(dataMat,axis=0)
    # 去除平均值,实现数据中心化
    meanRemoved=dataMat-meanVals 
    covMat=np.cov(meanRemoved,rowvar=0)
    # 计算矩阵的特征值个特征向量
    eigVals,eigVects=np.linalg.eig(np.mat(covMat))
    eigValInd=np.argsort(eigVals)
    # 从大到小对N个值排序
    eigValInd=eigValInd[:-(topNfeat+1):-1]
    redEigVects=eigVects[:,eigValInd]
    # 将数据转换到新空间
    lowDDataMat=meanRemoved*redEigVects
    reconMat=(lowDDataMat*redEigVects.T)+meanVals
    return lowDDataMat,reconMat

dataMat = np.array([[1,2,3], [4,2,1], [3,2,1]])
X = load_digits().data[:, :]

lowDDataMat,reconMat = pca(X,topNfeat=2)
print(lowDDataMat)
print(reconMat)
plt.scatter(lowDDataMat[:,0].tolist(), lowDDataMat[:,1].tolist(),c = 'r',marker = 'o')

2个参数:一个参数是用于进行PCA操作的数据集,第二个参数是可选参数,即应用N个特征,首

先计算并减去原始数据集的平均值,然后计算协方差矩阵及其特征值,然后利用argsort函数对特征

值进行从小到大排序,根据特征值排序的逆序就可以得到最大的N个向量,这些向量将构成后面对

数据进行转换的矩阵,该矩阵则利用N个特征将原始数据转换到新空间中,最后原始数据被重构后

返回,同时,降维之后的数据集也被返回。

相关推荐
AI街潜水的八角9 分钟前
基于C++的决策树C4.5机器学习算法(不调包)
c++·算法·决策树·机器学习
喵~来学编程啦36 分钟前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
深圳市青牛科技实业有限公司1 小时前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_1 小时前
符号回归概念
人工智能·数据挖掘·回归
用户691581141652 小时前
Ascend Extension for PyTorch的源码解析
人工智能
Chef_Chen2 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
Troc_wangpeng2 小时前
R language 关于二维平面直角坐标系的制作
开发语言·机器学习
用户691581141652 小时前
Ascend C的编程模型
人工智能
-Nemophilist-2 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归