【损失函数】Cross Entropy Loss 交叉熵损失

1、介绍

主页介绍的几种损失函数都是适用于回归问题损失函数,对于分类问题,最常用的损失函数是交叉熵损失函数 Cross Entropy Loss。它用于测量两个概率分布之间的差异,通常用于评估分类模型的性能。

2、公式

对于二分类问题,交叉熵损失的一般形式为:

其中, 是样本数量, 是实际标签, 是模型的预测概率。

对于多分类问题,交叉熵损失的一般形式为:

其中, 是样本数量, 是类别数量, 是实际标签的独热编码(one-hot encoding),​ 是模型对类别 的预测概率。

3、图像

上图是交叉熵损失(Cross Entropy Loss)的图像。图中展示了两个类别(真实类别和错误类别)的概率与损失之间的关系,可以看到约接近目标值损失越小,随着误差变差,损失呈指数增长。

4、实例

假设我们有以下情况:我们正在训练一个模型来进行三种实例的分类,此时有100个待测样本。

我们使用 CrossEntropyLoss 作为损失函数:

python 复制代码
import torch
import torch.nn as nn

# 示例数据
torch.manual_seed(42)
num_classes = 3
num_samples = 100
y_true = torch.randint(0, num_classes, (num_samples,))
y_pred_logits = torch.randn(num_samples, num_classes)

# 定义交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 计算损失
loss = criterion(y_pred_logits, y_true)

print(f'Cross Entropy Loss: {loss.item()}')

在这个例子中,y_pred_logits 是模型的输出,它包含了对每个类别的未归一化的预测值。y_true 是实际标签。通过传递这两者给 CrossEntropyLoss,可以计算交叉熵损失。在实际训练中,您可能需要结合优化器来更新模型的权重以减小损失。

5、参考

深度学习常用损失函数总览:基本形式、原理、特点 (qq.com)

相关推荐
CoovallyAIHub29 分钟前
从“模仿”到“进化”!华科&小米开源MindDrive:在线强化学习重塑「语言-动作」闭环驾驶
深度学习·算法·计算机视觉
whaosoft-14329 分钟前
51c自动驾驶~合集62
人工智能·机器学习·自动驾驶
OpenBayes32 分钟前
Open-AutoGLM 实现手机端自主操作;PhysDrive 数据集采集真实驾驶生理信号
人工智能·深度学习·机器学习·数据集·文档转换·图片生成·蛋白质设计
CoovallyAIHub43 分钟前
SAM 真的开始「分割一切」,从图像到声音,Meta 开源 SAM Audio
深度学习·算法·计算机视觉
哆啦叮当1 小时前
VADv2 基于概率规划的端到端自动驾驶模型
人工智能·机器学习·自动驾驶
五月底_1 小时前
GRPO参数详解
人工智能·深度学习·nlp·rl·grpo
hopsky1 小时前
经典Transformer的PyTorch实现
pytorch·深度学习·transformer
会挠头但不秃2 小时前
深度学习(5)循环神经网络
人工智能·rnn·深度学习
_Li.2 小时前
机器学习-贝叶斯公式
人工智能·机器学习·概率论
哥布林学者2 小时前
吴恩达深度学习课程四:计算机视觉 第二周:经典网络结构 课后习题和代码实践
深度学习·ai