【损失函数】Cross Entropy Loss 交叉熵损失

1、介绍

主页介绍的几种损失函数都是适用于回归问题损失函数,对于分类问题,最常用的损失函数是交叉熵损失函数 Cross Entropy Loss。它用于测量两个概率分布之间的差异,通常用于评估分类模型的性能。

2、公式

对于二分类问题,交叉熵损失的一般形式为:

其中, 是样本数量, 是实际标签, 是模型的预测概率。

对于多分类问题,交叉熵损失的一般形式为:

其中, 是样本数量, 是类别数量, 是实际标签的独热编码(one-hot encoding),​ 是模型对类别 的预测概率。

3、图像

上图是交叉熵损失(Cross Entropy Loss)的图像。图中展示了两个类别(真实类别和错误类别)的概率与损失之间的关系,可以看到约接近目标值损失越小,随着误差变差,损失呈指数增长。

4、实例

假设我们有以下情况:我们正在训练一个模型来进行三种实例的分类,此时有100个待测样本。

我们使用 CrossEntropyLoss 作为损失函数:

python 复制代码
import torch
import torch.nn as nn

# 示例数据
torch.manual_seed(42)
num_classes = 3
num_samples = 100
y_true = torch.randint(0, num_classes, (num_samples,))
y_pred_logits = torch.randn(num_samples, num_classes)

# 定义交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 计算损失
loss = criterion(y_pred_logits, y_true)

print(f'Cross Entropy Loss: {loss.item()}')

在这个例子中,y_pred_logits 是模型的输出,它包含了对每个类别的未归一化的预测值。y_true 是实际标签。通过传递这两者给 CrossEntropyLoss,可以计算交叉熵损失。在实际训练中,您可能需要结合优化器来更新模型的权重以减小损失。

5、参考

深度学习常用损失函数总览:基本形式、原理、特点 (qq.com)

相关推荐
封步宇AIGC4 小时前
量化交易系统开发-实时行情自动化交易-3.4.2.Okex行情交易数据
人工智能·python·机器学习·数据挖掘
封步宇AIGC4 小时前
量化交易系统开发-实时行情自动化交易-2.技术栈
人工智能·python·机器学习·数据挖掘
景鹤4 小时前
【算法】递归+回溯+剪枝:78.子集
算法·机器学习·剪枝
陌上阳光4 小时前
动手学深度学习68 Transformer
人工智能·深度学习·transformer
love_and_hope5 小时前
Pytorch学习--神经网络--完整的模型训练套路
人工智能·pytorch·python·深度学习·神经网络·学习
光明中黑暗6 小时前
机器学习 笔记
人工智能·笔记·机器学习
yxzgjx6 小时前
水滴式粉碎机在稻壳粉碎与饲料加工中的应用
机器学习
阑梦清川6 小时前
数学建模---利用Matlab快速实现机器学习(上)
机器学习·数学建模·matlab·预测算法
pzx_0016 小时前
【Pytorch】model.eval()与model.train()
人工智能·pytorch·机器学习
IT古董7 小时前
【机器学习】平均绝对误差(MAE:Mean Absolute Error)
人工智能·python·机器学习