【损失函数】Cross Entropy Loss 交叉熵损失

1、介绍

主页介绍的几种损失函数都是适用于回归问题损失函数,对于分类问题,最常用的损失函数是交叉熵损失函数 Cross Entropy Loss。它用于测量两个概率分布之间的差异,通常用于评估分类模型的性能。

2、公式

对于二分类问题,交叉熵损失的一般形式为:

其中, 是样本数量, 是实际标签, 是模型的预测概率。

对于多分类问题,交叉熵损失的一般形式为:

其中, 是样本数量, 是类别数量, 是实际标签的独热编码(one-hot encoding),​ 是模型对类别 的预测概率。

3、图像

上图是交叉熵损失(Cross Entropy Loss)的图像。图中展示了两个类别(真实类别和错误类别)的概率与损失之间的关系,可以看到约接近目标值损失越小,随着误差变差,损失呈指数增长。

4、实例

假设我们有以下情况:我们正在训练一个模型来进行三种实例的分类,此时有100个待测样本。

我们使用 CrossEntropyLoss 作为损失函数:

python 复制代码
import torch
import torch.nn as nn

# 示例数据
torch.manual_seed(42)
num_classes = 3
num_samples = 100
y_true = torch.randint(0, num_classes, (num_samples,))
y_pred_logits = torch.randn(num_samples, num_classes)

# 定义交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 计算损失
loss = criterion(y_pred_logits, y_true)

print(f'Cross Entropy Loss: {loss.item()}')

在这个例子中,y_pred_logits 是模型的输出,它包含了对每个类别的未归一化的预测值。y_true 是实际标签。通过传递这两者给 CrossEntropyLoss,可以计算交叉熵损失。在实际训练中,您可能需要结合优化器来更新模型的权重以减小损失。

5、参考

深度学习常用损失函数总览:基本形式、原理、特点 (qq.com)

相关推荐
音视频牛哥16 分钟前
从“十五五”到数字化转型:音视频技术在未来产业中的关键作用
人工智能·深度学习·计算机视觉·音视频·十五五规划音视频低延迟方案·十五五规划低空经济低延迟方案·rtsp rtmp播放器
高洁0132 分钟前
激活函数应该具有哪些特征
人工智能·python·深度学习·神经网络·transformer
IT·小灰灰40 分钟前
AI学会理解物理法则:OpenAI Sora 2如何重塑视频生成新范式
人工智能·python·深度学习·机器学习·数据挖掘·音视频
AI科技星1 小时前
姬无烦科幻与张祥前统一场论的完美融合
数据结构·人工智能·算法·机器学习·重构
comli_cn1 小时前
Adam算法
人工智能·算法·机器学习
JoannaJuanCV1 小时前
自动驾驶—CARLA仿真(4)基础概念
人工智能·机器学习·自动驾驶
铅笔侠_小龙虾1 小时前
深度学习理论推导--二分类逻辑回归
深度学习·分类·逻辑回归
JoannaJuanCV1 小时前
自动驾驶—CARLA仿真(3) 坐标和坐标变换
人工智能·机器学习·自动驾驶
深度之眼1 小时前
入选TPAMI顶刊!多模态图像融合新突破!
深度学习·机器学习·多模态