【损失函数】Cross Entropy Loss 交叉熵损失

1、介绍

主页介绍的几种损失函数都是适用于回归问题损失函数,对于分类问题,最常用的损失函数是交叉熵损失函数 Cross Entropy Loss。它用于测量两个概率分布之间的差异,通常用于评估分类模型的性能。

2、公式

对于二分类问题,交叉熵损失的一般形式为:

其中, 是样本数量, 是实际标签, 是模型的预测概率。

对于多分类问题,交叉熵损失的一般形式为:

其中, 是样本数量, 是类别数量, 是实际标签的独热编码(one-hot encoding),​ 是模型对类别 的预测概率。

3、图像

上图是交叉熵损失(Cross Entropy Loss)的图像。图中展示了两个类别(真实类别和错误类别)的概率与损失之间的关系,可以看到约接近目标值损失越小,随着误差变差,损失呈指数增长。

4、实例

假设我们有以下情况:我们正在训练一个模型来进行三种实例的分类,此时有100个待测样本。

我们使用 CrossEntropyLoss 作为损失函数:

python 复制代码
import torch
import torch.nn as nn

# 示例数据
torch.manual_seed(42)
num_classes = 3
num_samples = 100
y_true = torch.randint(0, num_classes, (num_samples,))
y_pred_logits = torch.randn(num_samples, num_classes)

# 定义交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 计算损失
loss = criterion(y_pred_logits, y_true)

print(f'Cross Entropy Loss: {loss.item()}')

在这个例子中,y_pred_logits 是模型的输出,它包含了对每个类别的未归一化的预测值。y_true 是实际标签。通过传递这两者给 CrossEntropyLoss,可以计算交叉熵损失。在实际训练中,您可能需要结合优化器来更新模型的权重以减小损失。

5、参考

深度学习常用损失函数总览:基本形式、原理、特点 (qq.com)

相关推荐
AI小云16 小时前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
隐语SecretFlow16 小时前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Billy_Zuo17 小时前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈17 小时前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy17 小时前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
L.fountain18 小时前
机器学习shap分析案例
人工智能·机器学习
weixin_4296302618 小时前
机器学习-第一章
人工智能·机器学习
Cedric111318 小时前
机器学习中的距离总结
人工智能·机器学习
寒月霜华1 天前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu1 天前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力