逻辑回归(Logistic Regression)

什么是机器学习

逻辑回归 (Logistic Regression)虽然名字中包含"回归"一词,但实际上是一种用于解决分类问题的统计学习方法,而不是回归问题。它是一种线性模型,常用于二分类问题,也可以扩展到多分类问题。

基本原理

模型表示

逻辑回归模型假设输入特征的线性组合,然后通过一个称为逻辑函数 (也称为sigmoid函数)将结果映射到一个概率值。对于二分类问题,模型表示如下:

其中 b0,b1,b2,...,bn 是模型参数,x1,x2,...,xn 是输入特征。

决策边界

模型的输出值可以解释为样本属于类别1的概率,通常当输出概率大于等于0.5时,模型预测样本属于类别1;当输出概率小于0.5时,模型预测样本属于类别0

训练

逻辑回归的训练过程涉及最大化似然函数(最大似然估计)或最小化对数损失函数。通常使用梯度下降等优化算法进行参数优化。

优点

  • 简单而高效,特别适用于线性可分或近似可分的问题。
  • 输出结果是概率形式,易于解释。

适用场景

  • 二分类问题
  • 多分类问题
  • 线性决策边界足够解决问题的情况

代码示例(使用Python和 scikit-learn):

python 复制代码
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report

# 假设X是特征矩阵,y是目标变量
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建逻辑回归模型
model = LogisticRegression()

# 训练模型
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)

print(f'Accuracy: {accuracy}')
print(f'Classification Report:\n{report}')

上述示例演示了使用 scikit-learn 库中的逻辑回归实现的基本步骤。在实际应用中,需要根据具体问题进行特征工程、调参等处理。

相关推荐
无言(* ̄(エ) ̄)几秒前
C语言--运算符/函数/结构体/指针
c语言·开发语言·数据结构·数据库·算法·mongodb
大模型真好玩1 分钟前
从分享AI,到与AI共舞—大模型真好玩的2025总结
人工智能·trae·vibecoding
wa的一声哭了2 分钟前
赋范空间 赋范空间的完备性
python·线性代数·算法·机器学习·数学建模·矩阵·django
码农小白猿2 分钟前
提升压力容器改造方案报告标准条款审核效率,IACheck助力合规与安全
运维·人工智能·安全·ai·自动化·iacheck
代码游侠2 分钟前
学习笔记——SQLite3 编程与 HTML 基础
网络·笔记·算法·sqlite·html
IT_陈寒2 分钟前
SpringBoot 3.2实战:我用这5个冷门特性将接口QPS提升了200%
前端·人工智能·后端
shayudiandian3 分钟前
CSDN年度技术趋势预测
人工智能
im_AMBER5 分钟前
Leetcode 91 子序列首尾元素的最大乘积
数据结构·笔记·学习·算法·leetcode
Tisfy5 分钟前
LeetCode 840.矩阵中的幻方:模拟(+小小位运算)
算法·leetcode·矩阵
Word码6 分钟前
LeetCode1089. 复写零(双指针精讲)
算法