autograd与逻辑回归

一、autograd---自动求导系统

torch.autograd.backward()

torch.autograd.backward()是PyTorch中用于计算梯度的函数。以下是对该函数的参数的解释:

功能:自动求取梯度

• tensors: 用于求导的张量,如 loss

• retain_graph : 保存计算图

• create_graph : 创建导数计算图,用于高阶求导

• grad_tensors:多梯度权重

  • tensors:需要计算梯度的张量或张量的列表。这些张量的requires_grad属性必须为True
  • grad_tensors:可选参数,用于指定关于tensor的外部梯度。默认为None,表示使用默认的梯度为1。
  • retain_graph:可选参数,用于指定是否保留计算图以供后续计算。默认为None,表示根据需要自动释放计算图。
  • create_graph:可选参数,用于指定是否创建计算图以支持高阶梯度计算。默认为False,表示不创建计算图。

该函数的作用是计算tensors中张量的梯度,使用链式法则将梯度传播到叶子结点。它会自动构建计算图,并使用反向传播算法计算梯度。

当y = (x + w) * (w + 1),a = x + w,b = w + 1,y = a * b时对于w的梯度的推导如下:

𝜕y/𝜕w = (𝜕y/𝜕a) * (𝜕a/𝜕w) + (𝜕y/𝜕b) * (𝜕b/𝜕w)

= b * 1 + a * 1

= b + a

= (w + 1) + (x + w)

= 2w + x + 1

= 2 * 1 + 2 + 1

= 5

因此,当y = (x + w) * (w + 1)时,对于w的梯度为5。

torch.autograd.grad()

torch.autograd.grad()是PyTorch中用于计算梯度的函数。以下是对该函数的参数的解释:

功能:求取梯度

• outputs: 用于求导的张量,如 loss

• inputs : 需要梯度的张量

• create_graph : 创建导数计算图,用于高阶求导

• retain_graph : 保存计算图

• grad_outputs:多梯度权重

  • outputs:需要计算梯度的标量或标量的列表。这些标量通常是模型的损失函数。
  • inputs:关于哪些输入变量计算梯度。可以是单个张量或张量的列表。
  • grad_outputs:可选参数,用于指定关于outputs的外部梯度。默认为None,表示使用默认的梯度为1。
  • retain_graph:可选参数,用于指定是否保留计算图以供后续计算。默认为None,表示根据需要自动释放计算图。
  • create_graph:可选参数,用于指定是否创建计算图以支持高阶梯度计算。默认为False,表示不创建计算图。
    该函数的作用是计算outputs关于inputs的梯度。它会自动构建计算图,并使用反向传播算法计算梯度。

autograd小贴士:

  1. 梯度不自动清零
  2. 依赖于叶子结点的结点,requires_grad默认为True
  3. 叶子结点不可执行in-place

二、逻辑回归


线性回归是分析自变量x与因变量y(标量)之间关系的方法
逻辑回归是分析自变量x与因变量y(概率)之间关系的方法






相关推荐
0思必得02 小时前
[Web自动化] Selenium处理动态网页
前端·爬虫·python·selenium·自动化
-dzk-2 小时前
【代码随想录】LC 59.螺旋矩阵 II
c++·线性代数·算法·矩阵·模拟
水如烟2 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
韩立学长2 小时前
【开题答辩实录分享】以《基于Python的大学超市仓储信息管理系统的设计与实现》为例进行选题答辩实录分享
开发语言·python
大山同学2 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
qq_192779872 小时前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
风筝在晴天搁浅2 小时前
hot100 78.子集
java·算法
Jasmine_llq2 小时前
《P4587 [FJOI2016] 神秘数》
算法·倍增思想·稀疏表(st 表)·前缀和数组(解决静态区间和查询·st表核心实现高效预处理和查询·预处理优化(提前计算所需信息·快速io提升大规模数据读写效率
薛定谔的猫19822 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
超级大只老咪3 小时前
快速进制转换
笔记·算法