分布式训练相关基本参数的概念如下:
Definitions
- 
Node- A physical instance or a container; maps to the unit that the job manager works with. - 
Worker- A worker in the context of distributed training. - 
WorkerGroup- The set of workers that execute the same function (e.g. trainers). - 
LocalWorkerGroup- A subset of the workers in the worker group running on the same node. - 
RANK- The rank of the worker within a worker group. - 
WORLD_SIZE- The total number of workers in a worker group. - 
LOCAL_RANK- The rank of the worker within a local worker group. - 
LOCAL_WORLD_SIZE- The size of the local worker group. - 
rdzv_id- A user-defined id that uniquely identifies the worker group for a job. This id is used by each node to join as a member of a particular worker group. 
- 
rdzv_backend- The backend of the rendezvous (e.g.c10d). This is typically a strongly consistent key-value store. - 
rdzv_endpoint- The rendezvous backend endpoint; usually in form<host>:<port>. 
A Node runs LOCAL_WORLD_SIZE workers which comprise a LocalWorkerGroup. The union of all LocalWorkerGroups in the nodes in the job comprise the WorkerGroup.
翻译:
Node: 通常代表有几台机器
Worker: 指一个训练进程
WORD_SIZE: 总训练进程数,通常与所有机器加起来的GPU数相等(通常每个GPU跑一个训练进程)
RANK: 每个Worker的标号,用来标识每个每个训练进程(所有机器)
LOCAL_RANK : 在同一台机器上woker的标识,例如一台8卡机器上的woker标识就是0-7
总结:
一个节点(一台机器) 跑 LOCAL_WORLD_SIZE 个数的workers, 这些workers 构成了LocalWorkerGroup(组的概念), 
所有机器上的LocalWorkerGroup 就组成了WorkerGroup 
ps: Local 就是代表一台机器上的相关概念, 当只有一台机器时,Local的数据和不带local的数据时一致的
reference: