【Python机器学习】朴素贝叶斯分类器

朴素贝叶斯分类器是与线性模型非常相似的一种分类器,它的训练速度往往更快,但是泛化能力比线性分类器稍差。

朴素贝叶斯分类器高效的原因是:通过单独查看每个特征来学习参数,并从每个特征中收集简单的类别统计数据。

scikit-learn中实现了3中朴素贝叶斯分类器:GaussianNB、BernoulliNB、MultinomialNB。GaussianNB可用于任意连续数据,BernoulliNB假定输入数据为二分类数据,MultinomialNB假定输入数据为计数数据,也就是每个特征代表某个对象的整数计数。BernoulliNB、MultinomialNB主要用于文本数据的分类。

BernoulliNB分类器计算每个类别中每个特征不为0的元素个数,举例:

python 复制代码
import numpy as np

X=np.array([[0,1,0,1]
            ,[1,0,1,1]
            ,[0,0,0,1]
            ,[1,0,1,0]])
y=np.array([0,1,0,1])
counts={}
for label in np.unique(y):
    counts[label]=X[y==label].sum(axis=0)
print('特征数:\n{}'.format(counts))

上述例子中,先对数据点分类,第1、3个数据点为类别0,其他的为类别1。

在类别0里,特征为1 的个数分别为0、1、0、2个;

类别1里,特征为1的个数分别为2、0、2、1个。

MultinomialNB和GaussianNB计算的统计数据类型略有不同,MultinomialNB计算的是每个类别中每个特征的平均值,GaussianNB会保存每个类别中每个特征的平均值和标准差。

MultinomialNB和BernoulliNB预测公式的形式与线性模型完全相同,但是朴素贝叶斯模型coef_的含义与线性模型稍有不同。

MultinomialNB和BernoulliNB都只有一个参数alpha,用于控制模型复杂度。alpha的原理是,算法向数据中添加alpha这么多的虚拟数据点,这些数据点对所有特征取正值,这样将统计数据平滑化。alpha越大,平滑性越强,模型复杂度越低。alpha值对模型性能不重要,但是调整这个参数通常会使精度略有提高。

GaussianNB主要用于高维数据,而另外两种广泛用在稀疏计数数据,比如文本数据。MultinomialNB性能通常优于BernoulliNB,特别是包含很多非零特征的数据集上。

相关推荐
阿里云大数据AI技术2 分钟前
PAI Physical AI Notebook 详解 1:基于 Isaac 仿真的操作动作数据扩增与模仿学习
人工智能
该用户已不存在4 分钟前
Vibe Coding 入门指南:从想法到产品的完整路径
前端·人工智能·后端
一只鹿鹿鹿4 分钟前
系统安全设计方案书(Word)
开发语言·人工智能·web安全·需求分析·软件系统
Likeadust5 分钟前
视频直播点播平台EasyDSS:助力现代农业驶入数字科技“快车道”
人工智能·科技·音视频
南阳木子6 分钟前
GEO:AI 时代流量新入口,四川嗨它科技如何树立行业标杆? (2025年10月最新版)
人工智能·科技
oe10198 分钟前
好文与笔记分享 A Survey of Context Engineering for Large Language Models(中)
人工智能·笔记·语言模型·agent开发
铁锹少年10 分钟前
当多进程遇上异步:一次 Celery 与 Async SQLAlchemy 的边界冲突
分布式·后端·python·架构·fastapi
梨轻巧13 分钟前
pyside6常用控件:QCheckBox() 单个复选框、多个复选框、三态模式
python
寒秋丶18 分钟前
Milvus:集合(Collections)操作详解(三)
数据库·人工智能·python·ai·ai编程·milvus·向量数据库
寒秋丶20 分钟前
Milvus:Schema详解(四)
数据库·人工智能·python·ai·ai编程·milvus·向量数据库