【Python机器学习】朴素贝叶斯分类器

朴素贝叶斯分类器是与线性模型非常相似的一种分类器,它的训练速度往往更快,但是泛化能力比线性分类器稍差。

朴素贝叶斯分类器高效的原因是:通过单独查看每个特征来学习参数,并从每个特征中收集简单的类别统计数据。

scikit-learn中实现了3中朴素贝叶斯分类器:GaussianNB、BernoulliNB、MultinomialNB。GaussianNB可用于任意连续数据,BernoulliNB假定输入数据为二分类数据,MultinomialNB假定输入数据为计数数据,也就是每个特征代表某个对象的整数计数。BernoulliNB、MultinomialNB主要用于文本数据的分类。

BernoulliNB分类器计算每个类别中每个特征不为0的元素个数,举例:

python 复制代码
import numpy as np

X=np.array([[0,1,0,1]
            ,[1,0,1,1]
            ,[0,0,0,1]
            ,[1,0,1,0]])
y=np.array([0,1,0,1])
counts={}
for label in np.unique(y):
    counts[label]=X[y==label].sum(axis=0)
print('特征数:\n{}'.format(counts))

上述例子中,先对数据点分类,第1、3个数据点为类别0,其他的为类别1。

在类别0里,特征为1 的个数分别为0、1、0、2个;

类别1里,特征为1的个数分别为2、0、2、1个。

MultinomialNB和GaussianNB计算的统计数据类型略有不同,MultinomialNB计算的是每个类别中每个特征的平均值,GaussianNB会保存每个类别中每个特征的平均值和标准差。

MultinomialNB和BernoulliNB预测公式的形式与线性模型完全相同,但是朴素贝叶斯模型coef_的含义与线性模型稍有不同。

MultinomialNB和BernoulliNB都只有一个参数alpha,用于控制模型复杂度。alpha的原理是,算法向数据中添加alpha这么多的虚拟数据点,这些数据点对所有特征取正值,这样将统计数据平滑化。alpha越大,平滑性越强,模型复杂度越低。alpha值对模型性能不重要,但是调整这个参数通常会使精度略有提高。

GaussianNB主要用于高维数据,而另外两种广泛用在稀疏计数数据,比如文本数据。MultinomialNB性能通常优于BernoulliNB,特别是包含很多非零特征的数据集上。

相关推荐
@心都20 分钟前
机器学习数学基础:29.t检验
人工智能·机器学习
9命怪猫22 分钟前
DeepSeek底层揭秘——微调
人工智能·深度学习·神经网络·ai·大模型
奔跑吧邓邓子24 分钟前
【Python爬虫(12)】正则表达式:Python爬虫的进阶利刃
爬虫·python·正则表达式·进阶·高级
码界筑梦坊1 小时前
基于Flask的京东商品信息可视化分析系统的设计与实现
大数据·python·信息可视化·flask·毕业设计
pianmian11 小时前
python绘图之箱型图
python·信息可视化·数据分析
csbDD1 小时前
2025年网络安全(黑客技术)三个月自学手册
linux·网络·python·安全·web安全
kcarly2 小时前
KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
人工智能·语言模型·自然语言处理
赔罪3 小时前
Python 高级特性-切片
开发语言·python
倒霉蛋小马3 小时前
【YOLOv8】损失函数
深度学习·yolo·机器学习
伊一大数据&人工智能学习日志3 小时前
selenium爬取苏宁易购平台某产品的评论
爬虫·python·selenium·测试工具·网络爬虫