【sklearn练习】鸢尾花

一、

python 复制代码
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

第二行:导入datasets数据集

第三行:train_test_split 的作用是将数据集随机分配训练集和测试集。

第四行:采用的模型是,KNeighborsClassifier,实现 k 最近邻投票的分类器。

二、

python 复制代码
iris = datasets.load_iris()
iris_X = iris.data
iris_y = iris.target

第一行,获取鸢尾花数据集

第二行,将data存入iris_X

第三行,将标签存入iris_y

三、

python 复制代码
print(iris_X[:2, :])
print(iris_y)

第一行,打印数据的前两行

第二行,打印标签

输出结果为:

python 复制代码
[[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]

四、

python 复制代码
X_train, X_test, y_train, y_test = train_test_split(
    iris_X, iris_y, test_size=0.3)
print(y_train)

第一行,函数 train_test_split将数据集乱序分为训练集和测试集。

第三行,打印y_train查看

输出结果为:

python 复制代码
[1 1 2 0 0 2 2 0 0 0 1 0 2 0 2 1 0 1 0 2 2 2 0 1 0 2 2 2 1 0 0 1 0 0 0 0 2
 2 1 0 1 0 0 1 2 2 2 2 2 2 1 2 1 1 1 2 1 1 2 0 2 1 0 2 2 0 1 1 1 2 2 1 1 0
 1 0 1 1 2 2 2 2 1 1 0 0 0 2 1 0 0 1 1 2 0 0 0 2 2 0 2 1 0 0 2]

五、

python 复制代码
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)

第一行,类实例化

第二行,完成模型训练

六、

python 复制代码
print(knn.predict(X_test))
print(y_test)

对比模型预测的标签和原标签

输出结果为:

python 复制代码
[1 2 0 0 0 2 2 0 2 1 1 0 1 2 1 1 0 1 0 1 1 0 0 0 2 1 0 0 1 1 2 2 2 0 2 1 2
 1 2 2 2 1 0 2 1]
[1 2 0 0 0 2 2 0 2 1 1 0 1 2 1 1 0 1 0 1 1 0 0 0 2 1 0 0 1 1 2 2 2 0 1 1 2
 1 2 1 2 1 0 2 1]
相关推荐
Fuly10247 小时前
prompt构建技巧
人工智能·prompt
on_pluto_7 小时前
LLaMA: Open and Efficient Foundation Language Models 论文阅读
python·机器学习
小二·7 小时前
mac下解压jar包
ide·python·pycharm
XXX-X-XXJ7 小时前
二:RAG 的 “语义密码”:向量、嵌入模型与 Milvus 向量数据库实操
人工智能·git·后端·python·django·milvus
艾醒(AiXing-w)8 小时前
探索大语言模型(LLM):大模型微调方式全解析
人工智能·语言模型·自然语言处理
科兴第一吴彦祖8 小时前
基于Spring Boot + Vue 3的乡村振兴综合服务平台
java·vue.js·人工智能·spring boot·推荐算法
姚瑞南8 小时前
【AI 风向标】四种深度学习算法(CNN、RNN、GAN、RL)的通俗解释
人工智能·深度学习·算法
渡我白衣8 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(上)
人工智能·深度学习·学习
补三补四8 小时前
SMOTE 算法详解:解决不平衡数据问题的有效工具
人工智能·算法
为java加瓦8 小时前
前端学AI:如何写好提示词(prompt)
前端·人工智能·prompt