python数据可视化之地图绘制案例分析

在数据可视化领域,地理信息的展示有着无可替代的价值。本篇笔记将通过Python的pyecharts库实现一个中国直辖市GDP数据的地图分布可视化示例,帮助读者了解如何利用该工具进行地图数据渲染。

1. 导入所需模块

首先,我们需要导入pyecharts库中的相关组件:

如何安装请看上一篇博客pyhon数据可视化之折线图案例讲解

python 复制代码
from pyecharts.charts import Map
from pyecharts.options import ToolboxOpts, TitleOpts

Map是用于创建地图图表的对象,而ToolboxOptsTitleOpts分别用于配置图表的工具箱选项和标题选项。

2. 初始化地图对象与数据准备

定义一个Map对象,并准备各直辖市及其对应的GDP数值数据:

复制代码
a = Map()

# 数据集:直辖市名称与其对应的GDP数据(单位:亿元)
date = [
    ("北京市", 31723.1),
    ("上海市", 33019.23),
    ("天津市", 12252.61),
    ("重庆市", 22243.88)
]

3. 设置全局属性

接下来设置图表的基本样式和交互功能:

复制代码
a.set_global_opts(
    # 标题配置
    title_opts=TitleOpts(
        title="全国城市GDP(单位亿元)统计地图",  # 标题内容
        pos_bottom="1%",  # 标题距页面底部距离为1%
        pos_left="center"  # 标题水平居中显示
    ),
    
    # 工具箱配置
    toolbox_opts=ToolboxOpts(is_show=True)  # 启用并显示工具箱
)

4. 绑定数据到地图

现在将GDP数据绑定到地图上,使用的是中国的省份级地图:

复制代码
a.add(
    "地图统计",  # 系列名称
    date,  # 数据列表
    "china"  # 地图区域为中国(省份级)
)

5. 渲染生成HTML文件

最后一步是将绘制好的地图图表渲染成HTML文件以便查看和分享:

复制代码
a.render()  # 默认会在当前目录下生成一个HTML文件

完整代码如下

python 复制代码
# 导入PyEcharts库中的Map图表模块以及全局配置选项模块
from pyecharts.charts import Map
from pyecharts.options import ToolboxOpts, TitleOpts

# 初始化一个Map图表对象,用于绘制中国地图分布数据
a = Map()

# 定义直辖市及其对应的GDP数据
date = [
    ("北京市", 31723.1),
    ("上海市", 33019.23),
    ("天津市", 12252.61),
    ("重庆市", 22243.88)
]

# 设置图表的全局属性,包括标题和工具箱
a.set_global_opts(
    # 设置图表标题,内容为"全国城市GDP(单位亿元)统计地图"
    title_opts=TitleOpts(title="全国城市GDP(单位亿元)统计地图",
                         # 标题距离页面底部的距离设定为1%
                         pos_bottom="1%",
                         # 标题水平居中显示
                         pos_left="center"),

    # 启用并显示工具箱,提供交互功能如保存、缩放等
    toolbox_opts=ToolboxOpts(is_show=True)
)

# 将上述GDP数据添加到地图中,地区名称对应数据值
a.add(
    # 系列名称为"地图统计"
    "地图统计",
    # 数据列表
    date,
    # 使用的地图区域为中国(省份级)
    "china"
)

# 渲染图表并生成HTML文件展示结果,文件名默认与图表对象关联
a.render()

在html页面中找到浏览器图标点击运行

运行结果如下:

说明:工具箱中的按钮可以进行操作;地图可以放大缩小。读者自行体验。

相关推荐
大霸王龙20 分钟前
Python对比两张CAD图并标记差异的解决方案
python·opencv·计算机视觉
萧鼎1 小时前
PDFMathTranslate:让数学公式在PDF翻译中不再痛苦
python·pdf
@_猿来如此1 小时前
Django 实现电影推荐系统:从搭建到功能完善(附源码)
数据库·后端·python·django
lilye661 小时前
精益数据分析(19/126):走出数据误区,拥抱创业愿景
前端·人工智能·数据分析
过期的秋刀鱼!1 小时前
数据分析之技术干货业务价值 powerquery 分组排序后取TOP
数据挖掘·数据分析·excel·数据清洗·分组排序·powerquery·电商货品分析
Python×CATIA工业智造1 小时前
爬虫技术入门:基本原理、数据抓取与动态页面处理
爬虫·python·pycharm
fmdpenny1 小时前
用python写一个相机选型的简易程序
开发语言·python·数码相机
敲敲敲-敲代码2 小时前
【PyCharm- Python- ArcGIS】:安装一个和 ArcGIS 不冲突的独立 Python让PyCharm 使用 (解决全过程记录)
python·arcgis·pycharm
猿榜编程2 小时前
python基础-requests结合AI实现自动化数据抓取
开发语言·python·自动化
一键三联啊2 小时前
【FastJSON】的parse与parseObject
linux·前端·python