【算法与数据结构】509、LeetCode斐波那契数

文章目录

所有的LeetCode题解索引,可以看这篇文章------【算法和数据结构】LeetCode题解

一、题目

二、递归,动态规划解法

2.1 递归解法

思路分析:斐波那契数列可以用递归实现,下面直接给出代码,非常简单。递归的代码简单,但是递归的速度很慢,因为递归代码中的时间复杂度为 O ( n 2 ) O(n^2) O(n2)。

程序如下:

cpp 复制代码
class Solution {
public:
	int fib(int n) {		// 1 1 2 3 5 8 13 21
		if (n <= 1) return n;
		return fib(n - 1) + fib(n - 2);
	}
};

复杂度分析:

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2),一个fib(n)时间复杂度为 O ( ( 1 + n ) ∗ n / 2 ) = O ( n 2 ) O((1+n)*n/2)=O(n^2) O((1+n)∗n/2)=O(n2)。
  • 空间复杂度: O ( n ) O(n) O(n),递归中栈所需的空间。

2.2 动态规划解法

思路分析:动态数组为 d p [ i ] = d p [ i − 1 ] + d p [ i − 2 ] dp[i] = dp[i - 1] + dp[i - 2] dp[i]=dp[i−1]+dp[i−2],根据此公式,写出如下代码。

程序如下:

cpp 复制代码
class Solution {
public:
	int fib(int n) {		// 1 1 2 3 5 8 13 21
		if (n <= 1) return n;
		vector<int> dp(n + 1);	// 动态规划中的dp数组
		dp[0] = 0;
		dp[1] = 1;
		for (int i = 2; i <= n; i++) {
			dp[i] = dp[i - 1] + dp[i - 2];
		}
		return dp[n];
	}
};

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n)。
  • 空间复杂度: O ( n ) O(n) O(n)。

但是实际上,我们可以看到计算斐波那契数列只需要用到两个值,不必保留整个动态数组。因此对上述代码进行内存优化,空间复杂度从 O ( n ) O(n) O(n)变成 O ( 1 ) O(1) O(1)。

cpp 复制代码
class Solution {
public:
	int fib(int n) {		// 1 1 2 3 5 8 13 21
		if (n <= 1) return n;
		int dp[2];
		dp[0] = 0;
		dp[1] = 1;
		for (int i = 2; i <= n; i++) {
			int sum = dp[0] + dp[1];
			dp[0] = dp[1];
			dp[1] = sum;
		}
		return dp[1];
	}
};

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n)。
  • 空间复杂度: O ( 1 ) O(1) O(1)。

三、完整代码

cpp 复制代码
# include <iostream>
# include <vector>
using namespace std;

//class Solution {
//public:
//	int fib(int n) {		// 1 1 2 3 5 8 13 21
//		if (n <= 1) return n;
//		return fib(n - 1) + fib(n - 2);
//	}
//};

//class Solution {
//public:
//	int fib(int n) {		// 1 1 2 3 5 8 13 21
//		if (n <= 1) return n;
//		vector<int> dp(n + 1);	// 动态规划中的dp数组
//		dp[0] = 0;
//		dp[1] = 1;
//		for (int i = 2; i <= n; i++) {
//			dp[i] = dp[i - 1] + dp[i - 2];
//		}
//		return dp[n];
//	}
//};

class Solution {
public:
	int fib(int n) {		// 1 1 2 3 5 8 13 21
		if (n <= 1) return n;
		int dp[2];
		dp[0] = 0;
		dp[1] = 1;
		for (int i = 2; i <= n; i++) {
			int sum = dp[0] + dp[1];
			dp[0] = dp[1];
			dp[1] = sum;
		}
		return dp[1];
	}
};

int main() {
	int n = 4;
	Solution s1;
	int result = s1.fib(n);
	cout << result << endl;
	system("pause");
	return 0;
}

end

相关推荐
高山上有一只小老虎14 小时前
字符串字符匹配
java·算法
愚润求学14 小时前
【动态规划】专题完结,题单汇总
算法·leetcode·动态规划
林太白15 小时前
跟着TRAE SOLO学习两大搜索
前端·算法
ghie909015 小时前
图像去雾算法详解与MATLAB实现
开发语言·算法·matlab
云泽80815 小时前
从三路快排到内省排序:探索工业级排序算法的演进
算法·排序算法
weixin_4684668516 小时前
遗传算法求解TSP旅行商问题python代码实战
python·算法·算法优化·遗传算法·旅行商问题·智能优化·np问题
FMRbpm16 小时前
链表5--------删除
数据结构·c++·算法·链表·新手入门
程序员buddha16 小时前
C语言操作符详解
java·c语言·算法
John_Rey17 小时前
API 设计哲学:构建健壮、易用且符合惯用语的 Rust 库
网络·算法·rust
愿没error的x17 小时前
动态规划、贪心算法与分治算法:深入解析与比较
算法·贪心算法·动态规划