(Matlab)基于CNN-Bi_LSTM的多输入分类(卷积神经网络-双向长短期记忆网络)

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

二、实际运行效果:

三、部分代码展示:

四、完整代码+数据下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab 平台编译,将卷积神经网络 (CNN )与双向长短期记忆神经网络 (Bi- LSTM)结合,进行数据回归预测

  • 输入训练的数据包含12 个特征,1 个响应值,即通过12 个输入值预测1 个输出值(多变量、多输入分类预测

  • 归一化训练数据,提升网络泛化性

  • 通过CNN神经网络提取数据的特征,然后输入LSTM进行预测回归,提升整体网络的性能

  • 训练CNN-Bi_LSTM网络,可自行指定各种参数,修改方便

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

二、实际运行效果:

三、部分代码展示:

复制代码
clc;
clear;
warning off;
%% 导入数据
Data = table2array(readtable("数据集.xlsx"));
% 本例数据集中包含:
% 1. 总共357个样本(每一行表示一个样本)
% 2. 每个样本12个特征值(即前12列每一列表示样本的一个特征,即输入的变量)
% 3. 每个样本1个响应值(第13列为表示样本的响应值,即被预测的变量)

%% 划分训练集和测试集
Temp = randperm(size(Data,1)); % 打乱数据的顺序,提升模型的泛化性。
InPut_num = 1:1:12; % 输入特征的列数,数据表格中前12列为输入值,因此设置为1:1:12,若前5个为输入则设置为1:1:5
OutPut_num = 13; % 输出响应列数,本例仅一个响应值,为数据表格中第13列,若多个响应值参照上行数据格式设置为x:1:y

% 选取前327个样本作为训练集,后30个样本作为测试集,即(1:327),和(328:end)
Train_InPut = Data(Temp(1:327),InPut_num); % 训练输入
Train_OutPut = Data(Temp(1:327),OutPut_num); % 训练输出
Test_InPut = Data(Temp(328:end),InPut_num); % 测试输入
Test_OutPut = Data(Temp(328:end),OutPut_num); % 测试输出

%% 数据归一化
% 将输入特征数据归一化到0-1之间
[~, Ps] = mapminmax([Train_InPut;Test_InPut]',0,1); 
Train_InPut = mapminmax('apply',Train_InPut',Ps);
Test_InPut = mapminmax('apply',Test_InPut',Ps);

四、完整代码+数据下载:

相关推荐
东风西巷13 分钟前
Balabolka:免费高效的文字转语音软件
前端·人工智能·学习·语音识别·软件需求
非门由也24 分钟前
《sklearn机器学习——管道和复合估计器》联合特征(FeatureUnion)
人工智能·机器学习·sklearn
l12345sy24 分钟前
Day21_【机器学习—决策树(1)—信息增益、信息增益率、基尼系数】
人工智能·决策树·机器学习·信息增益·信息增益率·基尼指数
非门由也24 分钟前
《sklearn机器学习——管道和复合估算器》异构数据的列转换器
人工智能·机器学习·sklearn
计算机毕业设计指导35 分钟前
基于ResNet50的智能垃圾分类系统
人工智能·分类·数据挖掘
飞哥数智坊39 分钟前
终端里用 Claude Code 太难受?我把它接进 TRAE,真香!
人工智能·claude·trae
小王爱学人工智能1 小时前
OpenCV的阈值处理
人工智能·opencv·计算机视觉
新智元2 小时前
刚刚,光刻机巨头 ASML 杀入 AI!豪掷 15 亿押注「欧版 OpenAI」,成最大股东
人工智能·openai
机器之心2 小时前
全球图生视频榜单第一,爱诗科技PixVerse V5如何改变一亿用户的视频创作
人工智能·openai
新智元2 小时前
2025年了,AI还看不懂时钟!90%人都能答对,顶尖AI全军覆没
人工智能·openai