(Matlab)基于CNN-Bi_LSTM的多输入分类(卷积神经网络-双向长短期记忆网络)

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

二、实际运行效果:

三、部分代码展示:

四、完整代码+数据下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab 平台编译,将卷积神经网络 (CNN )与双向长短期记忆神经网络 (Bi- LSTM)结合,进行数据回归预测

  • 输入训练的数据包含12 个特征,1 个响应值,即通过12 个输入值预测1 个输出值(多变量、多输入分类预测

  • 归一化训练数据,提升网络泛化性

  • 通过CNN神经网络提取数据的特征,然后输入LSTM进行预测回归,提升整体网络的性能

  • 训练CNN-Bi_LSTM网络,可自行指定各种参数,修改方便

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

二、实际运行效果:

三、部分代码展示:

复制代码
clc;
clear;
warning off;
%% 导入数据
Data = table2array(readtable("数据集.xlsx"));
% 本例数据集中包含:
% 1. 总共357个样本(每一行表示一个样本)
% 2. 每个样本12个特征值(即前12列每一列表示样本的一个特征,即输入的变量)
% 3. 每个样本1个响应值(第13列为表示样本的响应值,即被预测的变量)

%% 划分训练集和测试集
Temp = randperm(size(Data,1)); % 打乱数据的顺序,提升模型的泛化性。
InPut_num = 1:1:12; % 输入特征的列数,数据表格中前12列为输入值,因此设置为1:1:12,若前5个为输入则设置为1:1:5
OutPut_num = 13; % 输出响应列数,本例仅一个响应值,为数据表格中第13列,若多个响应值参照上行数据格式设置为x:1:y

% 选取前327个样本作为训练集,后30个样本作为测试集,即(1:327),和(328:end)
Train_InPut = Data(Temp(1:327),InPut_num); % 训练输入
Train_OutPut = Data(Temp(1:327),OutPut_num); % 训练输出
Test_InPut = Data(Temp(328:end),InPut_num); % 测试输入
Test_OutPut = Data(Temp(328:end),OutPut_num); % 测试输出

%% 数据归一化
% 将输入特征数据归一化到0-1之间
[~, Ps] = mapminmax([Train_InPut;Test_InPut]',0,1); 
Train_InPut = mapminmax('apply',Train_InPut',Ps);
Test_InPut = mapminmax('apply',Test_InPut',Ps);

四、完整代码+数据下载:

相关推荐
码农三叔19 小时前
(7-3-02)电机与执行器系统:驱动器开发与控制接口(2)实时通信总线设计+33自由度人形机器人的双信道EtherCAT主设备架构
人工智能·机器人·人形机器人
shangjian00719 小时前
AI-大语言模型LLM-概念术语-Causal LM
人工智能·语言模型·自然语言处理
才盛智能科技19 小时前
元K:自助KTV行业AI生态领航者
大数据·人工智能·物联网·自助ktv系统·才盛云自助ktv系统
shangjian00719 小时前
AI-大语言模型LLM-模型微调2-BitFit微调
人工智能·语言模型·自然语言处理
掘根19 小时前
【C++ AI大模型接入SDK项目】项目背景,项目介绍,环境准备
人工智能
玄同76519 小时前
LangChain v1.0 中间件深度解析:从 Callback 到 Middleware 的演进
人工智能·语言模型·自然语言处理·中间件·langchain·agent·智能体
小毅&Nora19 小时前
【人工智能】【大模型】从厨房到实验室:解密LLaMA架构如何重塑大模型世界
人工智能·架构·llama
咚咚王者19 小时前
人工智能之核心技术 深度学习 第六章 生成对抗网络(GAN)
人工智能·深度学习·生成对抗网络
子夜江寒19 小时前
基于dlib与OpenCV的人脸检测与特征点标定技术实践
人工智能·opencv·计算机视觉
IRevers19 小时前
RF-DETR:第一个在COCO上突破60AP的DETR(含检测和分割推理)
图像处理·人工智能·python·深度学习·目标检测·计算机视觉