DES算法(Python实现)

一、具体描述

基于计算机高级语言(如C语言)实现DES算法

二、名词术语与相关知识

|--------------------|------------------------------------------------------------------------------------------------|
| DES算法 | DES(Data Encryption Standard)是一种对称加密算法,被广泛应用于数据加密领域。它使用64位密钥和64位明文,通过一系列的操作将明文加密成密文。 |
| 初始置换和逆初始置换 | 初始置换IP和逆初始置换IP^-1是DES算法中的两个置换操作。初始置换将64位明文按照特定的顺序重新排列,得到一个新的64位数据块;逆初始置换是初始置换的逆操作,将密文还原为明文。 |
| 扩展运算 | 扩展运算是DES算法中的一个操作,用于将32位数据扩展为48位。该操作使用选择置换矩阵E对32位数据进行扩展,并生成一个48位的数据块。 |
| S盒变换 | S盒变换是DES算法中的一个操作,用于将48位数据压缩为32位。该操作使用8个不同的S盒,在输入48位数据时输出32位数据。每个S盒都是一个4x16的置换表,用于将6位输入映射到4位输出。 |
| 置换运算 | 置换运算是DES算法中的一个操作,用于将32位数据根据特定的置换表进行置换。DES算法中使用的置换表有选择置换矩阵P和置换选择矩阵PC-1、PC-2。 |
| 子密钥生成 | 子密钥生成是DES算法中的一个步骤,用于生成16个48位的子密钥。该过程使用置换选择矩阵PC-1和PC-2,以及循环左移和压缩操作,从64位密钥中生成16个48位子密钥。 |
| 异或运算 | 异或运算是一种逻辑运算,用于对两个二进制数进行比较。当两个数的位相同时,结果为0,不同时,结果为1。 |

三、DES算法原理和实现方法

  1. 算法简介:DES算法是对称加密算法,也就是加密和解密的密钥相同。

DES算法的主要内容:DES算法的入口参数有三个:Key、Data、Mode。其中Key为7个字节共56位,是DES算法的工作密钥;Data为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或者解密。

  1. 算法实现:

1.算法流程:

百度DES算法图

  1. 算法实现:

对算法流程图进行总结得出,DES算法的基本框架为:

(1)对明文二进制进行IP置换

(2)对IP置换后的数据进行分割为L0和R0(即左32位和右32位)

(3)根据密钥进行对每一轮的子密钥计算(16轮相同运算)

(4)获取到下一轮的Ln和Rn,中间的Kn和计算函数f

(5)合并最后得到的L15和R15进行IP逆置换得到加密后的密文

    1. IP置换和IP逆置换
  1. IP置换是将64位数据重新换位,分为左32位和右32位,如下是IP置换表

|----|----|----|----|----|----|----|---|
| 58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 |
| 60 | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
| 62 | 54 | 46 | 38 | 30 | 22 | 14 | 6 |
| 64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
| 57 | 49 | 41 | 33 | 25 | 17 | 9 | 1 |
| 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
| 61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 |
| 63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 |

  1. IP逆置换和IP置换是一样的操作,IP逆置换表如下

|----|---|----|----|----|----|----|----|
| 40 | 8 | 48 | 16 | 56 | 24 | 64 | 32 |
| 39 | 7 | 47 | 15 | 55 | 23 | 63 | 31 |
| 38 | 6 | 46 | 14 | 54 | 22 | 62 | 30 |
| 37 | 5 | 45 | 13 | 53 | 21 | 61 | 29 |
| 36 | 4 | 44 | 12 | 52 | 20 | 60 | 28 |
| 35 | 3 | 43 | 11 | 51 | 19 | 59 | 27 |
| 34 | 2 | 42 | 10 | 50 | 18 | 58 | 26 |
| 33 | 1 | 41 | 9 | 49 | 17 | 57 | 25 |

    1. 计算每轮子密钥

DES密钥从64位变为56位,56位密钥由密钥置换表得到

|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 57 | 49 | 41 | 33 | 25 | 17 | 9 | 1 | 58 | 50 | 42 | 34 | 26 | 18 |
| 10 | 2 | 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 | 60 | 52 | 44 | 36 |
| 63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 | 62 | 54 | 46 | 38 | 30 | 22 |
| 14 | 6 | 61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 | 28 | 20 | 12 | 4 |

DES的每轮子密钥,是从56位的密钥中产生处不同的子密钥,确定子密钥方式如下:

  1. 将56位的密钥分为两部分,28位为一部分
  2. 根据不同的轮数,每部分循环左移1位或者2位置,移动的位数表如下

|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |

移动之后,从56位中选48位,在密钥压缩置换后确定子密钥,压缩表如下

|----|----|----|----|----|----|----|----|----|----|----|----|
| 14 | 17 | 11 | 24 | 1 | 5 | 3 | 28 | 15 | 6 | 21 | 10 |
| 23 | 19 | 12 | 4 | 26 | 8 | 16 | 7 | 27 | 20 | 13 | 2 |
| 41 | 52 | 31 | 37 | 47 | 55 | 30 | 40 | 51 | 45 | 33 | 48 |
| 44 | 49 | 39 | 56 | 34 | 53 | 46 | 42 | 50 | 36 | 29 | 32 |

    1. f函数和异或运算

这里主要包括E拓展置换、S盒代替、P盒置换,就不再具体阐述了。

3.Python实现

  • 初始化

self.ip(IP置换)、self.ip1(逆IP置换)、self.E(E置换,32位明文置换为48位)、self.P(P置换,对S盒后的数据再次置换)、self.K(默认密钥0101010001101000011010010101001101101001011101110110100101110110

)、self.k1(密钥K1初始置换)、self.k0(密钥循环移位位数)、self.S(S盒数据,8个S盒)

二、def的函数和接口

(1)def __substitution(self, table: str, self_table: list) -> str:(置换函数:密钥、IP等)

(2)def str2bin(self, string: str) -> str:(明文转换为二进制字符串)

(3)def bin2str(self, binary: str) -> str:(二进制字符串转成字符串)

(4)def __bin2int(self, binary: str) -> list:(将二进制字符串每8位转成int列表)

(5)def __int2bin(self, list_int: list) -> str:(将int类型的列表转成二进制串)

(6)def __get_block_list(self, binary: str) -> list:(对二进制串进行切分,每64位为一块)

(7)def modify_secretkey(self):(修改默认密钥函数)

(8)ef __f_funtion(self, right: str, key: str):(对right进行E拓展,与key进行异或操作,进入S盒子,进行P置换)

(9)def __get_key_list(self):(返回加密过程中16轮的子密钥)

(10)def __xor_function(self, xor1: str, xor2: str):(异或操作返回的结果)

(11)def __s_box(self, xor_result: str):(S盒置换返回32位)

(12)def __iteration(self, bin_plaintext: str, key_list: list):(进行F函数以及左异或操作之后的字符串)

(13)def encode(self, plaintext):(加密接口)

(14)def decode(self, ciphertext):(解密)

三、实现过程截图

(1)开始运行后可以选择自己输入8位长度的密钥,然后可以进行加密和解密的选择

(2)选择加密,这里加密内容为:I love you!,可以得到加密后的密文为:

7B3BB376B983351445C6D1D9E6DA2847

(3)选择对刚刚加密的内容解密,就可以得到加密前的明文了。

四、Python代码

python 复制代码
import binascii
class ArrangeSimpleDES():
    def __init__(self):
        # 出初始化DES加密的参数
        self.ip = [
            58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
            62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
            57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
            61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7,
        ]  # ip置换

        self.ip1 = [
            40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
            38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
            36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
            34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25,
        ]  # 逆ip置换
        self.E = [
            32, 1, 2, 3, 4, 5,
            4, 5, 6, 7, 8, 9,
            8, 9, 10, 11, 12, 13,
            12, 13, 14, 15, 16, 17,
            16, 17, 18, 19, 20, 21,
            20, 21, 22, 23, 24, 25,
            24, 25, 26, 27, 28, 29,
            28, 29, 30, 31, 32, 1,
        ]  # E置换,将32位明文置换位48位
        self.P = [
            16, 7, 20, 21, 29, 12, 28, 17,
            1, 15, 23, 26, 5, 18, 31, 10,
            2, 8, 24, 14, 32, 27, 3, 9,
            19, 13, 30, 6, 22, 11, 4, 25,
        ]  # P置换,对经过S盒之后的数据再次进行置换
        # 设置默认密钥
        # self.K = '0111010001101000011010010111001101101001011100110110100101110110'
        self.K = '0101010001101000011010010101001101101001011101110110100101110110'
        self.k1 = [
            57, 49, 41, 33, 25, 17, 9,
            1, 58, 50, 42, 34, 26, 18,
            10, 2, 59, 51, 43, 35, 27,
            19, 11, 3, 60, 52, 44, 36,
            63, 55, 47, 39, 31, 23, 15,
            7, 62, 54, 46, 38, 30, 22,
            14, 6, 61, 53, 45, 37, 29,
            21, 13, 5, 28, 20, 12, 4,
        ]  # 密钥的K1初始置换
        self.k2 = [
            14, 17, 11, 24, 1, 5, 3, 28,
            15, 6, 21, 10, 23, 19, 12, 4,
            26, 8, 16, 7, 27, 20, 13, 2,
            41, 52, 31, 37, 47, 55, 30, 40,
            51, 45, 33, 48, 44, 49, 39, 56,
            34, 53, 46, 42, 50, 36, 29, 32,
        ]

        self.k0 = [1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, ]  # 秘钥循环移位的位数

        self.S = [
            [
                0xe, 0x4, 0xd, 0x1, 0x2, 0xf, 0xb, 0x8, 0x3, 0xa, 0x6, 0xc, 0x5, 0x9, 0x0, 0x7,
                0x0, 0xf, 0x7, 0x4, 0xe, 0x2, 0xd, 0x1, 0xa, 0x6, 0xc, 0xb, 0x9, 0x5, 0x3, 0x8,
                0x4, 0x1, 0xe, 0x8, 0xd, 0x6, 0x2, 0xb, 0xf, 0xc, 0x9, 0x7, 0x3, 0xa, 0x5, 0x0,
                0xf, 0xc, 0x8, 0x2, 0x4, 0x9, 0x1, 0x7, 0x5, 0xb, 0x3, 0xe, 0xa, 0x0, 0x6, 0xd,
            ],
            [
                0xf, 0x1, 0x8, 0xe, 0x6, 0xb, 0x3, 0x4, 0x9, 0x7, 0x2, 0xd, 0xc, 0x0, 0x5, 0xa,
                0x3, 0xd, 0x4, 0x7, 0xf, 0x2, 0x8, 0xe, 0xc, 0x0, 0x1, 0xa, 0x6, 0x9, 0xb, 0x5,
                0x0, 0xe, 0x7, 0xb, 0xa, 0x4, 0xd, 0x1, 0x5, 0x8, 0xc, 0x6, 0x9, 0x3, 0x2, 0xf,
                0xd, 0x8, 0xa, 0x1, 0x3, 0xf, 0x4, 0x2, 0xb, 0x6, 0x7, 0xc, 0x0, 0x5, 0xe, 0x9,
            ],
            [
                0xa, 0x0, 0x9, 0xe, 0x6, 0x3, 0xf, 0x5, 0x1, 0xd, 0xc, 0x7, 0xb, 0x4, 0x2, 0x8,
                0xd, 0x7, 0x0, 0x9, 0x3, 0x4, 0x6, 0xa, 0x2, 0x8, 0x5, 0xe, 0xc, 0xb, 0xf, 0x1,
                0xd, 0x6, 0x4, 0x9, 0x8, 0xf, 0x3, 0x0, 0xb, 0x1, 0x2, 0xc, 0x5, 0xa, 0xe, 0x7,
                0x1, 0xa, 0xd, 0x0, 0x6, 0x9, 0x8, 0x7, 0x4, 0xf, 0xe, 0x3, 0xb, 0x5, 0x2, 0xc,
            ],
            [
                0x7, 0xd, 0xe, 0x3, 0x0, 0x6, 0x9, 0xa, 0x1, 0x2, 0x8, 0x5, 0xb, 0xc, 0x4, 0xf,
                0xd, 0x8, 0xb, 0x5, 0x6, 0xf, 0x0, 0x3, 0x4, 0x7, 0x2, 0xc, 0x1, 0xa, 0xe, 0x9,
                0xa, 0x6, 0x9, 0x0, 0xc, 0xb, 0x7, 0xd, 0xf, 0x1, 0x3, 0xe, 0x5, 0x2, 0x8, 0x4,
                0x3, 0xf, 0x0, 0x6, 0xa, 0x1, 0xd, 0x8, 0x9, 0x4, 0x5, 0xb, 0xc, 0x7, 0x2, 0xe,
            ],
            [
                0x2, 0xc, 0x4, 0x1, 0x7, 0xa, 0xb, 0x6, 0x8, 0x5, 0x3, 0xf, 0xd, 0x0, 0xe, 0x9,
                0xe, 0xb, 0x2, 0xc, 0x4, 0x7, 0xd, 0x1, 0x5, 0x0, 0xf, 0xa, 0x3, 0x9, 0x8, 0x6,
                0x4, 0x2, 0x1, 0xb, 0xa, 0xd, 0x7, 0x8, 0xf, 0x9, 0xc, 0x5, 0x6, 0x3, 0x0, 0xe,
                0xb, 0x8, 0xc, 0x7, 0x1, 0xe, 0x2, 0xd, 0x6, 0xf, 0x0, 0x9, 0xa, 0x4, 0x5, 0x3,
            ],
            [
                0xc, 0x1, 0xa, 0xf, 0x9, 0x2, 0x6, 0x8, 0x0, 0xd, 0x3, 0x4, 0xe, 0x7, 0x5, 0xb,
                0xa, 0xf, 0x4, 0x2, 0x7, 0xc, 0x9, 0x5, 0x6, 0x1, 0xd, 0xe, 0x0, 0xb, 0x3, 0x8,
                0x9, 0xe, 0xf, 0x5, 0x2, 0x8, 0xc, 0x3, 0x7, 0x0, 0x4, 0xa, 0x1, 0xd, 0xb, 0x6,
                0x4, 0x3, 0x2, 0xc, 0x9, 0x5, 0xf, 0xa, 0xb, 0xe, 0x1, 0x7, 0x6, 0x0, 0x8, 0xd,
            ],
            [
                0x4, 0xb, 0x2, 0xe, 0xf, 0x0, 0x8, 0xd, 0x3, 0xc, 0x9, 0x7, 0x5, 0xa, 0x6, 0x1,
                0xd, 0x0, 0xb, 0x7, 0x4, 0x9, 0x1, 0xa, 0xe, 0x3, 0x5, 0xc, 0x2, 0xf, 0x8, 0x6,
                0x1, 0x4, 0xb, 0xd, 0xc, 0x3, 0x7, 0xe, 0xa, 0xf, 0x6, 0x8, 0x0, 0x5, 0x9, 0x2,
                0x6, 0xb, 0xd, 0x8, 0x1, 0x4, 0xa, 0x7, 0x9, 0x5, 0x0, 0xf, 0xe, 0x2, 0x3, 0xc,
            ],
            [
                0xd, 0x2, 0x8, 0x4, 0x6, 0xf, 0xb, 0x1, 0xa, 0x9, 0x3, 0xe, 0x5, 0x0, 0xc, 0x7,
                0x1, 0xf, 0xd, 0x8, 0xa, 0x3, 0x7, 0x4, 0xc, 0x5, 0x6, 0xb, 0x0, 0xe, 0x9, 0x2,
                0x7, 0xb, 0x4, 0x1, 0x9, 0xc, 0xe, 0x2, 0x0, 0x6, 0xa, 0xd, 0xf, 0x3, 0x5, 0x8,
                0x2, 0x1, 0xe, 0x7, 0x4, 0xa, 0x8, 0xd, 0xf, 0xc, 0x9, 0x0, 0x3, 0x5, 0x6, 0xb,
            ],
        ]  # 16进制表示S盒的数据,S盒是为了将48位转换为32位,有8个盒子

    def __substitution(self, table: str, self_table: list) -> str:
        """
        :param table: 需要进行置换的列表,是一个01字符串
        :param self_table: 置换表,在__init__中初始化了
        :return: 返回置换后的01字符串
        """
        sub_result = ""
        for i in self_table:
            sub_result += table[i - 1]
        return sub_result

    def str2bin(self, string: str) -> str:
        """
        将明文转为二进制字符串:
        :param string: 任意字符串
        :return:二进制字符串
        """
        plaintext_list = list(bytes(string, 'utf8'))  # 将字符串转成bytes类型,再转成list
        result = []  # 定义返回结果
        for num in plaintext_list:
            result.append(bin(num)[2:].zfill(8))  # 将列表的每个元素转成二进制字符串,8位宽度
        return "".join(result)

    def bin2str(self, binary: str) -> str:
        """
        二进制字符串转成字符串
        :param binary:
        :return:
        """
        list_bin = [binary[i:i + 8] for i in range(0, len(binary), 8)]  # 对二进制字符串进行切分,每8位为一组
        list_int = []
        for b in list_bin:
            list_int.append(int(b, 2))  # 对二进制转成int
        result = bytes(list_int).decode()  # 将列表转成bytes,在进行解码,得到字符串
        return result

    def __bin2int(self, binary: str) -> list:
        """
        由于加密之后的二进制无法直接转成字符,有不可见字符在,utf8可能无法解码,所以需要将二进制字符串每8位转成int型号列表,用于转成bytes再转hex
        :param binary: 二进制字符串
        :return: int型列表
        """
        list_bin = [binary[i:i + 8] for i in range(0, len(binary), 8)]  # 对二进制字符串进行切分,每8位为一组
        list_int = []
        for b in list_bin:
            list_int.append(int(b, 2))
        return list_int

    def __int2bin(self, list_int: list) -> str:
        result = []
        for num in list_int:
            result.append(bin(num)[2:].zfill(8))
        return ''.join(result)

    def __get_block_list(self, binary: str) -> list:
        """
        对明文二进制串进行切分,每64位为一块,DES加密以64位为一组进行加密的
        :type binary: 二进制串
        """
        len_binary = len(binary)
        if len_binary % 64 != 0:
            binary_block = binary + ("0" * (64 - (len_binary % 64)))
            return [binary_block[i:i + 64] for i in range(0, len(binary_block), 64)]
        else:
            return [binary[j:j + 64] for j in range(0, len(binary), 64)]

    def modify_secretkey(self):
        """
        修改默认密钥函数
        :return: None
        """
        print('默认二进制形式密钥为:{}'.format(self.K))
        print("字符串形式密钥为:{}".format(self.bin2str(self.K)))
        newkey = input("输入新的密钥(长度为8):")
        if len(newkey) != 8:
            print("密钥长度不符合,请重新输入:")
            self.modify_secretkey()
        else:
            bin_key = self.str2bin(newkey)
            self.K = bin_key
            print("新的二进制形式密钥为:{}".format(self.K))

    def __f_funtion(self, right: str, key: str):
        """
        :param right: 明文二进制的字符串加密过程的右半段
        :param key: 当前轮数的密钥
        :return: 进行E扩展,与key异或操作,S盒操作后返回32位01字符串
        """
        # 对right进行E扩展
        e_result = self.__substitution(right, self.E)
        # 与key 进行异或操作
        xor_result = self.__xor_function(e_result, key)
        # 进入S盒子
        s_result = self.__s_box(xor_result)
        # 进行P置换
        p_result = self.__substitution(s_result, self.P)
        return p_result

    def __get_key_list(self):
        """
        :return: 返回加密过程中16轮的子密钥
        """
        key = self.__substitution(self.K, self.k1)
        left_key = key[0:28]
        right_key = key[28:56]
        keys = []
        for i in range(1, 17):
            move = self.k0[i - 1]
            move_left = left_key[move:28] + left_key[0:move]
            move_right = right_key[move:28] + right_key[0:move]
            left_key = move_left
            right_key = move_right
            move_key = left_key + right_key
            ki = self.__substitution(move_key, self.k2)
            keys.append(ki)
        return keys

    def __xor_function(self, xor1: str, xor2: str):
        """
        :param xor1: 01字符串
        :param xor2: 01字符串
        :return: 异或操作返回的结果
        """
        size = len(xor1)
        result = ""
        for i in range(0, size):
            result += '0' if xor1[i] == xor2[i] else '1'
        return result

    def __s_box(self, xor_result: str):
        """
        :param xor_result: 48位01字符串
        :return: 返回32位01字符串
        """
        result = ""
        for i in range(0, 8):
            # 将48位数据分为6组,循环进行
            block = xor_result[i * 6:(i + 1) * 6]
            line = int(block[0] + block[5], 2)
            colmn = int(block[1:4], 2)
            res = bin(self.S[i][line * 16 + colmn])[2:]
            if len(res) < 4:
                res = '0' * (4 - len(res)) + res
            result += res
        return result

    def __iteration(self, bin_plaintext: str, key_list: list):
        """
        :param bin_plaintext: 01字符串,64位
        :param key_list: 密钥列表,共16个
        :return: 进行F函数以及和left异或操作之后的字符串
        """
        left = bin_plaintext[0:32]
        right = bin_plaintext[32:64]
        for i in range(0, 16):
            next_lift = right
            f_result = self.__f_funtion(right, key_list[i])
            next_right = self.__xor_function(left, f_result)
            left = next_lift
            right = next_right
        bin_plaintext_result = left + right
        return bin_plaintext_result[32:] + bin_plaintext_result[:32]

    def encode(self, plaintext):
        """
        :param plaintext: 明文字符串
        :return: 密文字符串
        """
        bin_plaintext = self.str2bin(plaintext)
        bin_plaintext_block = self.__get_block_list(bin_plaintext)
        ciphertext_bin_list = []
        key_list = self.__get_key_list()
        for block in bin_plaintext_block:
            # 初代ip置换
            sub_ip = self.__substitution(block, self.ip)
            ite_result = self.__iteration(sub_ip, key_list)
            # 逆ip置换
            sub_ip1 = self.__substitution(ite_result, self.ip1)
            ciphertext_bin_list.append(sub_ip1)
        ciphertext_bin = ''.join(ciphertext_bin_list)
        result = self.__bin2int(ciphertext_bin)
        return bytes(result).hex().upper()

    def decode(self, ciphertext):
        '''
        :param ciphertext: 密文字符串
        :return: 明文字符串
        '''
        b_ciphertext = binascii.a2b_hex(ciphertext)
        bin_ciphertext = self.__int2bin(list(b_ciphertext))
        bin_plaintext_list = []
        key_list = self.__get_key_list()
        key_list = key_list[::-1]
        bin_ciphertext_block = [bin_ciphertext[i:i + 64] for i in range(0, len(bin_ciphertext), 64)]
        for block in bin_ciphertext_block:
            sub_ip = self.__substitution(block, self.ip)
            ite = self.__iteration(sub_ip, key_list)
            sub_ip1 = self.__substitution(ite, self.ip1)
            bin_plaintext_list.append(sub_ip1)
        bin_plaintext = ''.join(bin_plaintext_list).replace('00000000', '')
        return self.bin2str(bin_plaintext)

    def main(self):
        select = input("请选择方式:\n1、加密\t 2、解密\n选择:")
        if select == '1':
            plaintext = input("输入要加密的内容:")
            # print("Your plaintext is:{}".format(plaintext))
            ciphertext = self.encode(plaintext)
            print("加密后是:{}".format(ciphertext))
        elif select == '2':
            plaintext = input("输入要解密的内容:")
            # print("Your ciphertext is:{}".format(plaintext))
            plaintext = self.decode(plaintext)
            print("解密的内容是:{}".format(plaintext))
            # print(len(plaintext))
        else:
            input("Please selecting again!")
            self.main()


if __name__ == '__main__':
    mydes = ArrangeSimpleDES()
    mydes.modify_secretkey()
    while True:
        mydes.main()
        print("")
相关推荐
DY009J12 分钟前
深度探索Kali Linux的精髓与实践应用
linux·运维·服务器
程序员-珍23 分钟前
虚拟机ip突然看不了了
linux·网络·网络协议·tcp/ip·centos
什么鬼昵称1 小时前
Pikachu- Over Permission-垂直越权
运维·服务器
码农小白1 小时前
linux驱动:(22)中断节点和中断函数
linux·运维·服务器
4647的码农历程1 小时前
Linux网络编程 -- 网络基础
linux·运维·网络
向李神看齐1 小时前
RTSP协议讲解
网络
Death2001 小时前
使用Qt进行TCP和UDP网络编程
网络·c++·qt·tcp/ip
魏大橙2 小时前
linux RCE本地/公网测试
网络·网络协议·udp
醉颜凉2 小时前
银河麒麟桌面操作系统V10 SP1:取消安装应用的安全授权认证
运维·安全·操作系统·国产化·麒麟·kylin os·安全授权认证
2401_857610032 小时前
SpringBoot实现:校园资料分享平台开发指南
服务器·spring boot·php