C2-4.2.2 决策树-纯度+信息熵+信息增益

C2-4.2.2 决策树-纯度+信息熵+信息增益

1、首先了解他的应用背景------决策树

其实说白了,就是一个二叉树

2、纯度

我们举一个买黄金的例子吧!黄金有999 和 9999 。 他们是有区别的,代表着黄金的纯度(相对杂质而言 ),那在决策树中------我们也引入了"纯度 "这一概念。如果结果集中,全是这一类的,那么我们说"vary pure"。如果结果集中有6个,但是3个是一个类别,那么我们说"not pure",把除这三个外的东西叫做"杂质"

2.1 纯度简述

  • 如果一个结果集(经过 一次 或多次 二叉树判别),都是 猫 / 都是 非猫,那么就说这个结果集 very pure

  • 如果一个结果集 既有 猫 又有 非猫,那么就是not pure 。但是not pure 也分级别 。------引出我们计算的公式

  • P1:是 猫的纯度。

    • 当一组数据有6个,猫有0个时,熵为0,纯度最高

    • 当一组数据有6个,猫有3个时,熵为0.92,纯度不好

      ...

3、信息熵(entropy )

那买黄金,有专业的机器来判别我们的黄金的纯度,那在决策树中的结果集中,如何判别纯度呢 / 判别纯度的标准??------这就引出了**"信息熵"** 的定义。

3.1 信息熵的定义

In Machine Learning, entropy ※※measures the level of disorder or uncertainty in a given dataset or system . It is a metric that quantifies the amount of information in a dataset, and it is commonly used to evaluate the quality of a model and its ability to make accurate predictions.

※A higher entropy value indicates a more heterogeneous dataset with diverse classes, while a lower entropy signifies a more pure and homogeneous subset of data. Decision tree models can use entropy to determine the best splits to make informed decisions and build accurate predictive models.

  • 【※※※总结】:
    • 信息熵是用来衡量 给出的数据集中 数据的纯度的
    • 信息熵越小,数据就越纯。
    • 通常用在机器学习分类的情况下

3.2 信息熵公式

4、信息增益(Information Gain)

4.1、信息增益概念:

Information gain calculates the reduction in entropy or surprise from transforming a dataset in some way.

It is commonly used in the construction of decision trees from a training dataset, by evaluating the information gain for each variable, and selecting the variable that maximizes the information gain , which in turn minimizes the entropy and best splits the dataset into groups for effective classification.

【※※※总结】:

  • 信息增益:是计算信息熵的减少量/看做减少速率的
  • 被广泛用在 决策树的节点选择上:对每一个可选的节点 进行信息增益判断,选择结果最大的作为节点------才能产生最小的信息熵结果
  • 信息增益代表了在一个条件下,信息复杂度(不确定性)减少的程度。

4.2 信息增益公式:

相关推荐
格图素书1 小时前
数学建模算法案例精讲500篇-【数学建模】DBSCAN聚类算法
算法·数据挖掘·聚类
DashVector2 小时前
向量检索服务 DashVector产品计费
数据库·数据仓库·人工智能·算法·向量检索
AI纪元故事会2 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
夏鹏今天学习了吗2 小时前
【LeetCode热题100(59/100)】分割回文串
算法·leetcode·深度优先
卡提西亚2 小时前
C++笔记-10-循环语句
c++·笔记·算法
还是码字踏实2 小时前
基础数据结构之数组的双指针技巧之对撞指针(两端向中间):三数之和(LeetCode 15 中等题)
数据结构·算法·leetcode·双指针·对撞指针
Khunkin3 小时前
牛顿迭代法:用几何直觉理解方程求根
机器学习
音视频牛哥3 小时前
超清≠清晰:视频系统里的分辨率陷阱与秩序真相
人工智能·机器学习·计算机视觉·音视频·大牛直播sdk·rtsp播放器rtmp播放器·smartmediakit
Coovally AI模型快速验证4 小时前
当视觉语言模型接收到相互矛盾的信息时,它会相信哪个信号?
人工智能·深度学习·算法·机器学习·目标跟踪·语言模型
电院工程师5 小时前
SIMON64/128算法Verilog流水线实现(附Python实现)
python·嵌入式硬件·算法·密码学