C2-4.2.2 决策树-纯度+信息熵+信息增益

C2-4.2.2 决策树-纯度+信息熵+信息增益

1、首先了解他的应用背景------决策树

其实说白了,就是一个二叉树

2、纯度

我们举一个买黄金的例子吧!黄金有999 和 9999 。 他们是有区别的,代表着黄金的纯度(相对杂质而言 ),那在决策树中------我们也引入了"纯度 "这一概念。如果结果集中,全是这一类的,那么我们说"vary pure"。如果结果集中有6个,但是3个是一个类别,那么我们说"not pure",把除这三个外的东西叫做"杂质"

2.1 纯度简述

  • 如果一个结果集(经过 一次 或多次 二叉树判别),都是 猫 / 都是 非猫,那么就说这个结果集 very pure

  • 如果一个结果集 既有 猫 又有 非猫,那么就是not pure 。但是not pure 也分级别 。------引出我们计算的公式

  • P1:是 猫的纯度。

    • 当一组数据有6个,猫有0个时,熵为0,纯度最高

    • 当一组数据有6个,猫有3个时,熵为0.92,纯度不好

      ...

3、信息熵(entropy )

那买黄金,有专业的机器来判别我们的黄金的纯度,那在决策树中的结果集中,如何判别纯度呢 / 判别纯度的标准??------这就引出了**"信息熵"** 的定义。

3.1 信息熵的定义

In Machine Learning, entropy ※※measures the level of disorder or uncertainty in a given dataset or system . It is a metric that quantifies the amount of information in a dataset, and it is commonly used to evaluate the quality of a model and its ability to make accurate predictions.

※A higher entropy value indicates a more heterogeneous dataset with diverse classes, while a lower entropy signifies a more pure and homogeneous subset of data. Decision tree models can use entropy to determine the best splits to make informed decisions and build accurate predictive models.

  • 【※※※总结】:
    • 信息熵是用来衡量 给出的数据集中 数据的纯度的
    • 信息熵越小,数据就越纯。
    • 通常用在机器学习分类的情况下

3.2 信息熵公式

4、信息增益(Information Gain)

4.1、信息增益概念:

Information gain calculates the reduction in entropy or surprise from transforming a dataset in some way.

It is commonly used in the construction of decision trees from a training dataset, by evaluating the information gain for each variable, and selecting the variable that maximizes the information gain , which in turn minimizes the entropy and best splits the dataset into groups for effective classification.

【※※※总结】:

  • 信息增益:是计算信息熵的减少量/看做减少速率的
  • 被广泛用在 决策树的节点选择上:对每一个可选的节点 进行信息增益判断,选择结果最大的作为节点------才能产生最小的信息熵结果
  • 信息增益代表了在一个条件下,信息复杂度(不确定性)减少的程度。

4.2 信息增益公式:

相关推荐
Not Dr.Wang42228 分钟前
自动控制系统稳定性研究及判据分析
算法
VT.馒头29 分钟前
【力扣】2722. 根据 ID 合并两个数组
javascript·算法·leetcode·职场和发展·typescript
ffqws_34 分钟前
A*算法:P5507 机关 题解
算法
CV@CV1 小时前
拆解自动驾驶核心架构——感知、决策、控制三层逻辑详解
人工智能·机器学习·自动驾驶
执着2591 小时前
力扣hot100 - 108、将有序数组转换为二叉搜索树
算法·leetcode·职场和发展
2501_901147831 小时前
学习笔记:单调递增数字求解的迭代优化与工程实践
linux·服务器·笔记·学习·算法
AI科技星1 小时前
张祥前统一场论核心场方程的经典验证-基于电子与质子的求导溯源及力的精确计算
线性代数·算法·机器学习·矩阵·概率论
kebijuelun1 小时前
ERNIE 5.0:统一自回归多模态与弹性训练
人工智能·算法·语言模型·transformer
历程里程碑1 小时前
普通数组----最大子数组和
大数据·算法·elasticsearch·搜索引擎·排序算法·哈希算法·散列表
52Hz1182 小时前
力扣230.二叉搜索树中第k小的元素、199.二叉树的右视图、114.二叉树展开为链表
python·算法·leetcode