MindSpore Serving基于昇腾910B实现大模型部署

一、Why MindSpore Serving

大模型时代,作为一个开发人员更多的是关注一个大模型如何训练好、如何调整模型参数、如何才能得到一个更高的模型精度。而作为一个整体项目,只有项目落地才能有其真正的价值。那么如何才能够使得大模型实现落地?如何才能使大模型项目中的文件以app的形式呈现给用户?

解决这个问题的一个组件就是Serving(服务),它主要解决的问题有:

  • 模型如何提交给服务;
  • 服务如何部署;
  • 服务如何呈现给用户;
  • 如何应用各种复杂场景等待

MindSpore Serving就是为了实现将大模型部署到生产环境而产生的。

MindSpore Serving是一个轻量级、高性能的服务模块,旨在帮助MindSpore开发者在生产环境中高效部署在线推理服务。当用户使用MindSpore完成模型训练后,导出MindIR,即可使用MindSpore Serving创建该大模型的推理服务。

MindSpore Serving实现的是一个模型服务化的部署,也就是说模型以线上的形式部署在服务器和云上,客户通过浏览器或者客户端去访问这个服务,将需要进行推理的输入内容发送给服务器,然后服务器将推理的结果返回给用户。

二、Component

MindSpore Serving由三部分组成,分别是客户端(Client)、Master和Worker。

  • 客户端是用户节点,提供了gRPC和RESTful的访问。

  • Master是一个管理节点,管理所有Worker的信息,包括Worker有哪些模型的信息;Master也是一个分化节点,接收到了客户端的请求之后,会根据请求的内容,结合当前管理的Worker节点的信息进行分发,将请求分发给不同的Worker执行。

  • Worker是一个执行节点,会执行加载、模型的更新,在接收到Master转发的请求之后,会将请求进行组装和拆分,然后做前处理、推理和后处理,执行完之后将结果返回给Master,Master再将结果返回给客户端。

三、Features

1.简单易用:

对客户端提供了gRPC和RESTful的服务,同时又提供了服务的拉起、服务的部署和客户端的访问,提供了简单的python接口,通过python接口,用户可以很方便的定制和访问部署服务,只需要一行命令就能够完成一件事。

2.提供定制化的服务:

对于模型来说输入和输出一般是固定的,而对于用户来说输入和输出可能是多变的,这就需要一个预处理模块,将模型的输入转为一个模型可以识别的输入。同时还需要一个后处理模块,给用户提供定制化的服务,针对模型可以定制方法classifly_top,用户根据需要去写前处理和后处理的操作。对于客户端来说只要指定模型名和方法名就能实现推理的结果。

3.支持批处理:

主要是针对具有batchsize维度的文本来说。batchsize实现了文本的并行,在硬件资源足够的情况下,batchsize可以很大地提高性能。对于MindSpore Serving来说,用户一次性发送的请求是不确定的,因此Serving分割和组合一个或者多个请求以匹配用户模型的batchsize。例如batchsize=2,但是有三个请求发过来,这时候就会将两个请求合并处理,到后面再拆分,这样就实现了三个请求的并行,提高了效率。

  1. 高性能扩展:
    MindSpore Serving所使用的算子引擎框架是MindSpore框架,具有自动融合和自动并行的高性能,再加上MindSpore Serving本身具有一个高性能的底层通信能力,客户端可以进行多实例组装,模型支持批处理,多模型之间支持并发,预处理和后处理支持多线程的处理。客户端和Worker可以实现扩展的,因此它也实现了一个高扩展性。

四、Demo

基于昇腾910B3

start_agent.py
python 复制代码
from agent.agent_multi_post_method import *
from multiprocessing import Queue

from config.serving_config import AgentConfig, ModelName


if __name__ == "__main__":
    startup_queue = Queue(1024)
    startup_agents(AgentConfig.ctx_setting,
                   AgentConfig.inc_setting,
                   AgentConfig.post_model_setting,
                   len(AgentConfig.AgentPorts),
                   AgentConfig.prefill_model,
                   AgentConfig.decode_model,
                   AgentConfig.argmax_model,
                   AgentConfig.topk_model,
                   startup_queue)

    started_agents = 0
    while True:
        value = startup_queue.get()
        print("agent : %f started" % value)
        started_agents = started_agents + 1
        if started_agents >= len(AgentConfig.AgentPorts):
            print("all agents started")
            break

    # server_app_post.init_server_app()
    # server_app_post.warmup_model(ModelName)
    # server_app_post.run_server_app()
client/server_app_post.py
python 复制代码
import asyncio
import json
import logging
import signal
import sys
import uuid
from multiprocessing import Process

import uvicorn
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from sse_starlette.sse import EventSourceResponse, ServerSentEvent

from client.client_utils import ClientRequest, Parameters
from config.serving_config import SERVER_APP_HOST, SERVER_APP_PORT
from server.llm_server_post import LLMServer

logging.basicConfig(level=logging.DEBUG,
                    filename='./output/server_app.log',
                    filemode='w',
                    format=
                    '%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s')

app = FastAPI()
llm_server = None


async def get_full_res(request, results):
    all_texts = ''
    async for result in results:
        prompt_ = result.prompt
        answer_texts = [output.text for output in result.outputs]
        text = answer_texts[0]
        if text is None:
            text = ""
        all_texts += text

    ret = {
        "generated_text": all_texts,
    }
    yield (json.dumps(ret, ensure_ascii=False) + '\n').encode("utf-8")


async def get_full_res_sse(request, results):
    all_texts = ''
    async for result in results:
        answer_texts = [output.text for output in result.outputs]
        text = answer_texts[0]
        if text is None:
            text = ""
        all_texts += text

    ret = {"event": "message", "retry": 30000, "generated_text": all_texts}
    yield json.dumps(ret, ensure_ascii=False)


async def get_stream_res(request, results):
    all_texts = ''
    index = 0
    async for result in results:
        prompt_ = result.prompt
        answer_texts = [output.text for output in result.outputs]

        text = answer_texts[0]
        if text is None:
            text = ""
        else:
            index += 1
        all_texts += text
        ret = {
            "token": {
                "text": text,
                "index": index
            },
        }
        print(ret, index)
        yield ("data:" + json.dumps(ret, ensure_ascii=False) + '\n').encode("utf-8")
    print(all_texts)
    return_full_text = request.parameters.return_full_text
    if return_full_text:
        ret = {
            "generated_text": all_texts,
        }
        yield ("data:" + json.dumps(ret, ensure_ascii=False) + '\n').encode("utf-8")


async def get_stream_res_sse(request, results):
    all_texts = ""
    index = 0
    async for result in results:
        answer_texts = [output.text for output in result.outputs]
        text = answer_texts[0]
        if text is None:
            text = ""
        else:
            index += 1
        all_texts += text
        ret = {"event": "message", "retry": 30000, "data": text}
        yield json.dumps(ret, ensure_ascii=False)

    print(all_texts)

    if request.parameters.return_full_text:
        ret = {"event": "message", "retry": 30000, "data": all_texts}
        yield json.dumps(ret, ensure_ascii=False)


def send_request(request: ClientRequest):
    print('request: ', request)
    request_id = str(uuid.uuid1())

    if request.parameters is None:
        request.parameters = Parameters()

    if request.parameters.do_sample is None:
        request.parameters.do_sample = False
    if request.parameters.top_k is None:
        request.parameters.top_k = 3
    if request.parameters.top_p is None:
        request.parameters.top_p = 1.0
    if request.parameters.temperature is None:
        request.parameters.temperature = 1.0
    if request.parameters.repetition_penalty is None:
        request.parameters.repetition_penalty = 1.0
    if request.parameters.max_new_tokens is None:
        request.parameters.max_new_tokens = 300
    if request.parameters.return_protocol is None:
        request.parameters.return_protocol = "sse"

    if request.parameters.top_k < 0:
        request.parameters.top_k = 0
    if request.parameters.top_p < 0.01:
        request.parameters.top_p = 0.01
    if request.parameters.top_p > 1.0:
        request.parameters.top_p = 1.0

    params = {
        "prompt": request.inputs,
        "do_sample": request.parameters.do_sample,
        "top_k": request.parameters.top_k,
        "top_p": request.parameters.top_p,
        "temperature": request.parameters.temperature,
        "repetition_penalty": request.parameters.repetition_penalty,
        "max_token_len": request.parameters.max_new_tokens
    }
    print('generate_answer...')
    global llm_server
    results = llm_server.generate_answer(request_id, **params)
    return results


@app.post("/models/llama2")
async def async_generator(request: ClientRequest):
    results = send_request(request)

    if request.stream:
        if request.parameters.return_protocol == "sse":
            print('get_stream_res_sse...')
            return EventSourceResponse(get_stream_res_sse(request, results),
                                       media_type="text/event-stream",
                                       ping_message_factory=lambda: ServerSentEvent(
                                           **{"comment": "You can't see this ping"}),
                                       ping=600)
        else:
            print('get_stream_res...')
            return StreamingResponse(get_stream_res(request, results))
    else:
        print('get_full_res...')
        return StreamingResponse(get_full_res(request, results))


@app.post("/models/llama2/generate")
async def async_full_generator(request: ClientRequest):
    results = send_request(request)
    print('get_full_res...')
    return StreamingResponse(get_full_res(request, results))


@app.post("/models/llama2/generate_stream")
async def async_stream_generator(request: ClientRequest):
    results = send_request(request)
    if request.parameters.return_protocol == "sse":
        print('get_stream_res_sse...')
        return EventSourceResponse(get_stream_res_sse(request, results),
                                   media_type="text/event-stream",
                                   ping_message_factory=lambda: ServerSentEvent(
                                       **{"comment": "You can't see this ping"}),
                                   ping=600)
    else:
        print('get_stream_res...')
        return StreamingResponse(get_stream_res(request, results))


def update_internlm_request(request: ClientRequest):
    if request.inputs:
        request.inputs = "<s><|User|>:{}<eoh>\n<|Bot|>:".format(request.inputs)


@app.post("/models/internlm")
async def async_internlm_generator(request: ClientRequest):
    # update_internlm_request(request)
    return await async_generator(request)


@app.post("/models/internlm/generate")
async def async_internlm_full_generator(request: ClientRequest):
    # update_internlm_request(request)
    return await async_full_generator(request)


@app.post("/models/internlm/generate_stream")
async def async_internlm_stream_generator(request: ClientRequest):
    # update_internlm_request(request)
    return await async_stream_generator(request)


def init_server_app():
    global llm_server
    llm_server = LLMServer()
    print('init server app finish')


async def warmup(request: ClientRequest):
    request.parameters = Parameters(max_new_tokens=3)
    results = send_request(request)
    print('warmup get_stream_res...')

    async for item in get_stream_res(request, results):
        print(item)


def warmup_llama2():
    request = ClientRequest(inputs="test")
    asyncio.run(warmup(request))
    print('warmup llama2 finish')


def warmup_internlm():
    request = ClientRequest(inputs="test")
    update_internlm_request(request)
    asyncio.run(warmup(request))
    print('warmup internlm finish')


def run_server_app():
    print('server port is: ', SERVER_APP_PORT)
    uvicorn.run(app, host=SERVER_APP_HOST, port=SERVER_APP_PORT)


WARMUP_MODEL_MAP = {
    "llama": warmup_llama2,
    "internlm": warmup_internlm,
}


def warmup_model(model_name):
    model_prefix = model_name.split('_')[0]
    if model_prefix in WARMUP_MODEL_MAP.keys():
        func = WARMUP_MODEL_MAP[model_prefix]
        warmup_process = Process(target=func)
        warmup_process.start()
        warmup_process.join()
        print("mindspore serving is started.")
    else:
        print("model not support warmup : ", model_name)


async def _get_batch_size():
    global llm_server
    batch_size = llm_server.get_bs_current()
    ret = {'event': "message", "retry": 30000, "data": batch_size}
    yield json.dumps(ret, ensure_ascii=False)


async def _get_request_numbers():
    global llm_server
    queue_size = llm_server.get_queue_current()
    ret = {'event': "message", "retry": 30000, "data": queue_size}
    yield json.dumps(ret, ensure_ascii=False)


@app.get("/serving/get_bs")
async def get_batch_size():
    return EventSourceResponse(_get_batch_size(),
                               media_type="text/event-stream",
                               ping_message_factory=lambda: ServerSentEvent(**{"comment": "You can't see this ping"}),
                               ping=600)


@app.get("/serving/get_request_numbers")
async def get_request_numbers():
    return EventSourceResponse(_get_request_numbers(),
                               media_type="text/event-stream",
                               ping_message_factory=lambda: ServerSentEvent(**{"comment": "You can't see this ping"}),
                               ping=600)


def sig_term_handler(signal, frame):
    print("catch SIGTERM")
    global llm_server
    llm_server.stop()
    print("----serving exit----")
    sys.exit(0)


if __name__ == "__main__":
    signal.signal(signal.SIGTERM, sig_term_handler)
    init_server_app()
    # warmup_model(ModelName)
    run_server_app()
相关推荐
小于小于大橙子2 小时前
视觉SLAM数学基础
人工智能·数码相机·自动化·自动驾驶·几何学
封步宇AIGC4 小时前
量化交易系统开发-实时行情自动化交易-3.4.2.Okex行情交易数据
人工智能·python·机器学习·数据挖掘
封步宇AIGC4 小时前
量化交易系统开发-实时行情自动化交易-2.技术栈
人工智能·python·机器学习·数据挖掘
景鹤4 小时前
【算法】递归+回溯+剪枝:78.子集
算法·机器学习·剪枝
陌上阳光4 小时前
动手学深度学习68 Transformer
人工智能·深度学习·transformer
OpenI启智社区4 小时前
共筑开源技术新篇章 | 2024 CCF中国开源大会盛大开幕
人工智能·开源·ccf中国开源大会·大湾区
AI服务老曹4 小时前
建立更及时、更有效的安全生产优化提升策略的智慧油站开源了
大数据·人工智能·物联网·开源·音视频
YRr YRr4 小时前
PyTorch:torchvision中的dataset的使用
人工智能
love_and_hope5 小时前
Pytorch学习--神经网络--完整的模型训练套路
人工智能·pytorch·python·深度学习·神经网络·学习
思通数据5 小时前
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
大数据·人工智能·目标检测·计算机视觉·自然语言处理·数据挖掘·ocr