Python 工具 | conda 基本命令

Hi,大家好,我是源于花海。本文主要了解 Python 的工具的conda相关的基本命令。Conda 是一个开源的软件包管理系统和环境管理系统,用于安装多个版本的软件包及其依赖关系,并在它们之间轻松切换。在Windows下,需要安装使用Anaconda Prompt ;在Linux下,可以直接执行 conda 命令。

目录

一、创建一个新的虚拟环境

二、激活并进入虚拟环境

[三、conda 基本命令](#三、conda 基本命令)

[1. 软件包的安装和删除](#1. 软件包的安装和删除)

[2. 查看各软件包版本](#2. 查看各软件包版本)

[3. 查看指定软件包版本](#3. 查看指定软件包版本)

[4. 搜索特定的软件包](#4. 搜索特定的软件包)

[5. 查看所有虚拟环境信息 (name、location)](#5. 查看所有虚拟环境信息 (name、location))

四、虚拟环境的退出和删除

[1. 退出当前虚拟环境:](#1. 退出当前虚拟环境:)

[2. 删除某个虚拟环境:](#2. 删除某个虚拟环境:)

[五、清除 Conda 缓存](#五、清除 Conda 缓存)


一、创建一个新的虚拟环境

我们在做开发时可能会同时开发多个项目,这些项目可能会依赖于不同的 python 环境,比如有的用到 python 3.6有的用到 python 3.7等。如果对于不同的项目,我们分别创建不同的虚拟环境来提供其所需要的版本,那么便可以将各项目所用的环境隔离开不会相互影响

就算多个项目使用同一个版本的python,这时候还是需要创建 conda 虚拟环境的,比如一个项目用 Pytorch 开发,一个项目用 TensorFlow 开发。不同框架对 python 包依赖,对底层库的依赖是不同的,此时可能会起冲突。比如安装 Pytorch 后再安装 TensorFlow 时可能会将 Pytorch 所用依赖更新(版本便会与之前的不匹配了),则会导致 Pytorch 无法运行。故创建虚拟环境是非常有必要的,它可以隔离各项目所需环境,让项目之间不会起冲突

所以建议每做一个新的项目的时候,创建一个新的虚拟环境,再进行后续操作。

请打开 WIN**+R-->cmd** 或者 Anaconda Powershell Prompt 进行创建:

python 复制代码
conda create -n env_name python=x.x

注意:

  • env_name------自定义的环境名称
  • x.x------指定的虚拟运行环境的 python 版本

二、激活并进入虚拟环境

激活虚拟环境:

python 复制代码
conda activate env_name

进入虚拟环境:

python 复制代码
activate env_name

激活并进入环境后,可检查当前环境下的 Python 版本

复制代码
python --version

三、conda 基本命令

1. 软件包的安装和删除

激活到指定环境后,可直接在当前环境中安装或删除软件包:

1)在当前环境中安装软件包

python 复制代码
conda install package_name 
# 指定包版本:conda install package_name=版本号
# 也可以使用:pip install安装 pip install package_name ==版本号
# 查看可用的版本:pip install package_name==*

2)删除当前环境中的软件包

python 复制代码
conda remove package_name
# 请注意:不是conda uninstall
# pip 指令下才有 pip uninstall

3)升级软件包

python 复制代码
conda update package_name  # 升级某个软件包
# conda update --all  # 升级所有软件包

2. 查看各软件包版本

python 复制代码
conda list

1)在 cmd 下直接输入

2)在特定虚拟环境里输入

3. 查看指定软件包版本

python 复制代码
conda list package_name

**4.**搜索特定的软件包

python 复制代码
conda search package_name

5. 查看所有虚拟环境信息 (name、location)

python 复制代码
conda env list
或者
conda info -e

四、虚拟环境的退出和删除

1. 退出当前虚拟环境:

python 复制代码
conda deactivate

2. 删除某个虚拟环境:

python 复制代码
conda remove -n your_env_name --all

五、清除 Conda 缓存

清除 Conda 缓存,以确保获取最新的元数据。此操作可以很有效地清理 C 盘内存(当然清理 C 盘的方法还有很多),本人亲测实用。

python 复制代码
conda clean --all
相关推荐
databook8 小时前
Manim实现脉冲闪烁特效
后端·python·动效
程序设计实验室8 小时前
2025年了,在 Django 之外,Python Web 框架还能怎么选?
python
飞哥数智坊9 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三10 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯10 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet12 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算13 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
用户25191624271113 小时前
Python之语言特点
python
机器之心13 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
刘立军13 小时前
使用pyHugeGraph查询HugeGraph图数据
python·graphql