ylov8的训练和预测使用(目标检测)

首先要配置文文件

1-配置数据集的yaml文件:

目录在ultralytics/cfg/datasets/下面:

例如我的:

(这里面的yaml文件在/ultralytics/cfg/datasets下面有很多,可以找几个参考一下)

python 复制代码
path: /path/to/eye_datasets  # dataset root dir
train: train/images  # train images (relative to 'path') 4 images
val: valid/images  # val images (relative to 'path') 4 images
# test: images/test # test images (optional)
# Classes
names:
  0: eye

2- 配置.config/Ultralytics/settings.yaml 文件(/root/.config/Ultralytics/settings.yaml)

例如我的(更改了datasets_dir、weights_dir、runs_dir的路径):

python 复制代码
settings_version: 0.0.4
datasets_dir: /share1/luli/yolov8/dataset/eye_datasets
weights_dir: /share1/luli/yolov8/eyeCodes/weights
runs_dir: /share1/luli/yolov8/eyeCodes/runs
uuid: 858bd79f1fda6637d7c2de0b0427e31d0157b9b3249c78658e02fe4956764daf
sync: true
api_key: ''
clearml: true
comet: true
dvc: true
hub: true
mlflow: true
neptune: true
raytune: true
tensorboard: true
wandb: true

训练代码

python 复制代码
from ultralytics import YOLO
# 加载模型
model = YOLO('yolov8n.pt')  # 加载预训练模型(推荐用于训练)
# 使用1个GPU训练模型
results = model.train(data='/path/to/ultralytics/cfg/datasets/eyes.yaml', epochs=100, imgsz=640, device=[0])

训练完成:

注意事项:

python 复制代码
import os, sys
sys.path.append("/share1/luli/yolov8")
将"/share1/luli/yolov8"这个里面下面的搜索范围添加到当前的文件里面。

from ..ultralytics import YOLO   ..表示在上上一级目录
相关推荐
工藤学编程44 分钟前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅2 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技4 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102166 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了6 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能7 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案7 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记