ylov8的训练和预测使用(目标检测)

首先要配置文文件

1-配置数据集的yaml文件:

目录在ultralytics/cfg/datasets/下面:

例如我的:

(这里面的yaml文件在/ultralytics/cfg/datasets下面有很多,可以找几个参考一下)

python 复制代码
path: /path/to/eye_datasets  # dataset root dir
train: train/images  # train images (relative to 'path') 4 images
val: valid/images  # val images (relative to 'path') 4 images
# test: images/test # test images (optional)
# Classes
names:
  0: eye

2- 配置.config/Ultralytics/settings.yaml 文件(/root/.config/Ultralytics/settings.yaml)

例如我的(更改了datasets_dir、weights_dir、runs_dir的路径):

python 复制代码
settings_version: 0.0.4
datasets_dir: /share1/luli/yolov8/dataset/eye_datasets
weights_dir: /share1/luli/yolov8/eyeCodes/weights
runs_dir: /share1/luli/yolov8/eyeCodes/runs
uuid: 858bd79f1fda6637d7c2de0b0427e31d0157b9b3249c78658e02fe4956764daf
sync: true
api_key: ''
clearml: true
comet: true
dvc: true
hub: true
mlflow: true
neptune: true
raytune: true
tensorboard: true
wandb: true

训练代码

python 复制代码
from ultralytics import YOLO
# 加载模型
model = YOLO('yolov8n.pt')  # 加载预训练模型(推荐用于训练)
# 使用1个GPU训练模型
results = model.train(data='/path/to/ultralytics/cfg/datasets/eyes.yaml', epochs=100, imgsz=640, device=[0])

训练完成:

注意事项:

python 复制代码
import os, sys
sys.path.append("/share1/luli/yolov8")
将"/share1/luli/yolov8"这个里面下面的搜索范围添加到当前的文件里面。

from ..ultralytics import YOLO   ..表示在上上一级目录
相关推荐
松果财经几秒前
蓝思科技赋能灵伴科技:AI眼镜产能与供应链双升级
人工智能·科技
青松@FasterAI42 分钟前
【NLP算法面经】本科双非,头条+腾讯 NLP 详细面经(★附面题整理★)
人工智能·算法·自然语言处理
萧鼎1 小时前
智能自动化新纪元:AI与UiPath RPA的协同应用场景与技术实践
人工智能·ui·rpa
果冻人工智能1 小时前
去中心化 AI:赋权还是混乱?
人工智能·深度学习·机器学习·架构·去中心化·区块链·ai员工
Landy_Jay2 小时前
深度学习:基于Qwen复现DeepSeek R1的推理能力
人工智能·深度学习
EterNity_TiMe_2 小时前
【人工智能】蓝耘智算平台盛大发布DeepSeek满血版:开创AI推理体验新纪元
人工智能·python·机器学习·deepseek
RFID舜识物联网3 小时前
RFID测温技术:电力设备安全监测的新利器
网络·人工智能·嵌入式硬件·物联网·安全
豪越大豪3 小时前
豪越消防一体化安全管控平台新亮点: AI功能、智能运维以及消防处置知识库
大数据·人工智能·运维开发
9命怪猫3 小时前
AI大模型-提示工程学习笔记13—自动提示工程师 (Automatic Prompt Engineer)
人工智能·ai·大模型·prompt