PyTorch|一些简单操作

在使用PyTorch构建自己的神经网络时,灵活度非常大,这给了用户更多的发挥空间,这里介绍一些简单的操作。

1,获取所安装PyToch版本

复制代码
>>> torch.__version__'1.11.0'

2,判断Cuda在我们的系统上是否可用​​​​​​​

复制代码
>>> torch.cuda.is_available<function is_available >

3,查看张量的形状,shape,size

​​​​​​​

复制代码
>>> data=torch.tensor([1,2,3,4])>>> data.shapetorch.Size([4])>>> data.size()torch.Size([4])

其中shape是张量的一个属性,而size()是一个方法,所以是对象访问时要带括号。使用dir()函数,可以将一个对象所有方法打印出来,就像这样:

复制代码
>>> dir(data)

4,dtype,张量的类型

复制代码
>>> data.dtypetorch.int64

5,device,判断张量在CPU还是GPU​​​​​​​

复制代码
>>> data.devicedevice(type='cpu')

6,改变维度

改变维度这个操作估计是最令人头痛,比如reshape,flattern,view,squeeze...,对于这些个人感觉最应该的就是进行大量实验直至最后理解不同的参数对应不同的维度。

相关推荐
weisian1515 分钟前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai7 分钟前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******2053111 分钟前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构
森之鸟20 分钟前
多智能体系统开发入门:用鸿蒙实现设备间的AI协同决策
人工智能·harmonyos·m
铁蛋AI编程实战27 分钟前
大模型本地轻量化微调+端侧部署实战(免高端GPU/16G PC可运行)
人工智能·架构·开源
铁蛋AI编程实战27 分钟前
最新版 Kimi K2.5 完整使用教程:从入门到实战(开源部署+API接入+多模态核心功能)
人工智能·开源
开源技术30 分钟前
如何将本地LLM模型与Ollama和Python集成
开发语言·python
weixin_4370446430 分钟前
Netbox批量添加设备——堆叠设备
linux·网络·python
我有医保我先冲31 分钟前
AI 时代 “任务完成“ 与 “专业能力“ 的区分:理论基础、行业影响与个人发展策略
人工智能·python·机器学习
林深现海31 分钟前
【刘二大人】PyTorch深度学习实践笔记 —— 第一集:深度学习全景概述(超详细版)
pytorch·笔记·深度学习