PyTorch|一些简单操作

在使用PyTorch构建自己的神经网络时,灵活度非常大,这给了用户更多的发挥空间,这里介绍一些简单的操作。

1,获取所安装PyToch版本

复制代码
>>> torch.__version__'1.11.0'

2,判断Cuda在我们的系统上是否可用​​​​​​​

复制代码
>>> torch.cuda.is_available<function is_available >

3,查看张量的形状,shape,size

​​​​​​​

复制代码
>>> data=torch.tensor([1,2,3,4])>>> data.shapetorch.Size([4])>>> data.size()torch.Size([4])

其中shape是张量的一个属性,而size()是一个方法,所以是对象访问时要带括号。使用dir()函数,可以将一个对象所有方法打印出来,就像这样:

复制代码
>>> dir(data)

4,dtype,张量的类型

复制代码
>>> data.dtypetorch.int64

5,device,判断张量在CPU还是GPU​​​​​​​

复制代码
>>> data.devicedevice(type='cpu')

6,改变维度

改变维度这个操作估计是最令人头痛,比如reshape,flattern,view,squeeze...,对于这些个人感觉最应该的就是进行大量实验直至最后理解不同的参数对应不同的维度。

相关推荐
空白诗4 分钟前
CANN ops-nn 算子解读:AIGC 风格迁移中的 BatchNorm 与 InstanceNorm 实现
人工智能·ai
新芒4 分钟前
暖通行业两位数下滑,未来靠什么赢?
大数据·人工智能
B站_计算机毕业设计之家7 分钟前
豆瓣电影数据采集分析推荐系统 | Python Vue Flask框架 LSTM Echarts多技术融合开发 毕业设计源码 计算机
vue.js·python·机器学习·flask·echarts·lstm·推荐算法
weixin_4462608512 分钟前
掌握 Claude Code Hooks:让 AI 变得更聪明!
人工智能
小白|14 分钟前
CANN性能调优实战:从Profiling到极致优化的完整方案
人工智能
哈__15 分钟前
CANN加速图神经网络GNN推理:消息传递与聚合优化
人工智能·深度学习·神经网络
渣渣苏15 分钟前
Langchain实战快速入门
人工智能·python·langchain
七月稻草人16 分钟前
CANN 生态下 ops-nn:AIGC 模型的神经网络计算基石
人工智能·神经网络·aigc·cann
User_芊芊君子17 分钟前
CANN_MetaDef图定义框架全解析为AI模型构建灵活高效的计算图表示
人工智能·深度学习·神经网络
I'mChloe18 分钟前
CANN GE 深度技术剖析:图优化管线、Stream 调度与离线模型生成机制
人工智能