李沐机器学习系列3---深度学习计算

1 层和块

1.1 定义块

用class表示层,并只需要实现构造函数和前向传播函数

python 复制代码
class MLP(nn.Module):
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用MLP的父类Module的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256)  # 隐藏层
        self.out = nn.Linear(256, 10)  # 输出层

    # 定义模型的前向传播,即如何根据输入X返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))

1.2 顺序块

python 复制代码
class MySequential(nn.Module):
    def __init__(self, *args):
        super().__init__()
        for idx, module in enumerate(args):
            # 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
            # 变量_modules中。_module的类型是OrderedDict
            self._modules[str(idx)] = module

    def forward(self, X):
        # OrderedDict保证了按照成员添加的顺序遍历它们
        for block in self._modules.values():
            X = block(X)
        return X

1.3 前向传播函数中执行代码

可以在网络中加入任何的操作

python 复制代码
class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        # 不计算梯度的随机权重参数。因此其在训练期间保持不变
        self.rand_weight = torch.rand((20, 20), requires_grad=False)
        self.linear = nn.Linear(20, 20)

    def forward(self, X):
        X = self.linear(X)
        # 使用创建的常量参数以及relu和mm函数
        X = F.relu(torch.mm(X, self.rand_weight) + 1)
        # 复用全连接层。这相当于两个全连接层共享参数
        X = self.linear(X)
        # 控制流
        while X.abs().sum() > 1:
            X /= 2
        return X.sum()

2 参数管理

参数访问,参数结构

参数访问

参数管理

python 复制代码
def init_xavier(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)
def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)

可以自定义初始化方法

python 复制代码
def my_init(m):
    if type(m) == nn.Linear:
        print("Init", *[(name, param.shape)
                        for name, param in m.named_parameters()][0])
        nn.init.uniform_(m.weight, -10, 10)
        m.weight.data *= m.weight.data.abs() >= 5

net.apply(my_init)
net[0].weight[:2]

3 自定义层

3.1 不带参数层

继承基础层,并实现前向传播

python 复制代码
import torch
import torch.nn.functional as F
from torch import nn


class CenteredLayer(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, X):
        return X - X.mean()


3.2 带参数的层

python 复制代码
class MyLinear(nn.Module):
    def __init__(self, in_units, units):
        super().__init__()
        self.weight = nn.Parameter(torch.randn(in_units, units))
        self.bias = nn.Parameter(torch.randn(units,))
    def forward(self, X):
        linear = torch.matmul(X, self.weight.data) + self.bias.data
        return F.relu(linear)

4 读写文件

单个张量可以用save和load进行读写

加载和保存模型参数

相关推荐
todoitbo7 分钟前
【TextIn大模型加速器 + 火山引擎】基于 Dify 构建企业智能文档中枢:技术文档问答+合同智审+发票核验一站式解决方案
人工智能·ocr·火山引擎·工作流·dify·textln·企业智能文档
生信碱移8 分钟前
神经网络单细胞预后分析:这个方法直接把 TCGA 预后模型那一套迁移到单细胞与空转数据上了!竟然还能做模拟敲除与预后靶点筛选?!
人工智能·深度学习·神经网络·算法·机器学习·数据挖掘·数据分析
线束线缆组件品替网10 分钟前
高可靠线缆工程实战:ElectronAix 德国工业线缆全解析
网络·人工智能·汽车·电脑·硬件工程·材料工程
rcc862811 分钟前
开源RAG知识库平台深度解析
人工智能·开源
福客AI智能客服12 分钟前
AI智能客服系统:增值服务行业的售后核心解决方案
大数据·人工智能
thubier(段新建)12 分钟前
2025技术实践复盘:在沉淀中打磨,在融合中锚定AI协同新方向
大数据·人工智能
龙萱坤诺13 分钟前
Sora-2 API 技术文档:创建角色接口
人工智能·aigc·ai视频·sora-2
ftpeak17 分钟前
Burn:纯 Rust 小 AI 引擎的嵌入式物体识别之旅(一步不踩坑)
开发语言·人工智能·rust
渡我白衣21 分钟前
计算机组成原理(11):加法器
python·机器学习·numpy·pandas·matplotlib·计组·数电
档案宝档案管理22 分钟前
一键对接OA/ERP/企业微信|档案宝实现业务与档案一体化管理
大数据·数据库·人工智能·档案·档案管理