激活函数整理

sigmoid函数

python 复制代码
import torch
from d2l import torch as d2l
%matplotlib inline
​
x=torch.arange(-10,10,0.1,requires_grad=True)
sigmoid=torch.nn.Sigmoid()
y=sigmoid(x)
​
d2l.plot(x.detach(),y.detach(),'x','sigmoid(x)',figsize=(5,2.5))

sigmoid函数连续、光滑、单调递增,以 (0,0.5) 中心对称,是一个良好的阈值函数。在x超出[-6,6]的范围后,函数值基本上没有变化,值非常接近,在应用中一般不考虑。

sigmoid函数的值域范围限制在(0,1)之间,恰巧与概率值的范围相对应,这样Sigmoid函数就能与一个概率分布联系起来了。

存在等式:

当输入值为0时,sigmoid函数的导数达到最大值0.25;而输入在任一方向上越远离0点时,导数越接近0。

python 复制代码
#清除以前的梯度
#retain_graph如果设置为False,计算图中的中间变量在计算完后就会被释放。
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(),x.grad,'x','grad of sigmoid')

sigmoid函数可用作逻辑回归模型的分类器。除此之外还存在其自身的推到特性。

对于分类问题,尤其是二分类问题,都假定服从伯努利分布,

根据指数分布族的一半表现形式

伯努利分布可变形为:

故,伯努利分布也属于指数分布族,

,可得

此为sigmoid函数形式。

tanh函数

与sigmoid类似,tanh函数也会将输入压缩至(-1,1)。

python 复制代码
import torch
from d2l import torch as d2l
%matplotlib inline
​
x=torch.arange(-8.0,8.0,0.1,requires_grad=True)
tanh=torch.nn.Tanh()
y=tanh(x)
​
d2l.plot(x.detach(),y.detach(),'x','tanh(x)',figsize=(5,2.5))

存在等式:

tanh函数的导数如下,当输入接近0时,tanh函数的导数接近最大值1,输入在任一方向上远离0点,导数越接近0。

python 复制代码
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(),x.grad,'x','grad of tanh',figsize=(5,2.5))

ReLU函数


ReLU函数的求导表现很好:要么让参数消失,要么让参数通过。

ReLU减轻了神经网络的梯度消失问题。ReLU函数有很多变体,如LeakyReLU,pReLU等。

python 复制代码
#原函数
import torch
from d2l import torch as d2l
%matplotlib inline
​
x=torch.arange(-8.0,8.0,0.1,requires_grad=True)
relu=torch.nn.ReLU()
y=relu(x)
​
d2l.plot(x.detach(),y.detach(),'x','relu',figsize=(5,2.5))
​
#导数
#retain_graph如果设置为False,计算图中的中间变量在计算完后就会被释放。
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(),x.grad,'x','grad of relu',figsize=(5,2.5))

变种:Leaky Relu函数

负区间值非0,为一个斜率相较小的线性函数

softmax函数

在二分类任务时,经常使用sigmoid激活函数。而在处理多分类问题的时候,需要使用softmax函数。它的输出有两条规则。

  • 每一项的区间范围的(0,1)

  • 所有项相加的和为1

假设有一个数组 V,Vi代表 V 中的第i个元素,那么这个元素的softmax值的计算公式为:

python 复制代码
x=torch.Tensor([3.,1.,-3.]) softmax=torch.nn.Softmax(dim=0) y=softmax(x) print(y)
相关推荐
一水鉴天几秒前
整体设计 定稿 之27 基于整体设计总表的系统架构分析 (codebuddy)
人工智能·架构
ones~1 分钟前
深度学习基础概念详解
人工智能·深度学习
AndrewHZ2 分钟前
【大模型技术学习】大模型压力测试全攻略:以Qwen3-32B为例
人工智能·大模型·llm·压力测试·模型部署·通义千问·qwen3-32b
好奇龙猫6 分钟前
【AI学习-comfyUI学习-第十七六节-SUPIR放大(XL模型专属)-各个部分学习-记录】
人工智能·学习
机器之心7 分钟前
Thinking Machines首款产品重大更新:K2 Thinking、Qwen3-VL都可以微调了
人工智能·openai
步里软件8 分钟前
2571.从代码逻辑到实用体验:一款 AI 图像生成工具的技术实现与场景落地
人工智能·ai 图生图批量处理·无水印 ai 图像生成·批量提示词生图处理·自动化图像生成工具·ai 图像风格转换·ai图像生成
windfantasy19909 分钟前
青少年编程考级:建立学习目标,提升综合素养的有效途径
人工智能·学习·青少年编程
GEO AI搜索优化助手11 分钟前
语义共生:GEO如何引领人机协作的内容新范式
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
牛哥带你学代码14 分钟前
遥感卫星数据读取
人工智能·机器学习
2401_8414956422 分钟前
【自然语言处理】自然语言处理中数据集的开发与测试:从基础划分到稳健评估的全维度实践
人工智能·自然语言处理·测试集·数据集划分·随机法·数据块法·划分策略