python&Pandas五:数据分析与统计

,Pandas提供了丰富的数据分析和统计功能,使得对数据进行摘要、统计和可视化变得更加容易。以下是一些示例说明:

数据统计和摘要:

复制代码
   import pandas as pd

   # 创建一个示例DataFrame
   data = {'Name': ['Alice', 'Bob', 'Charlie'],
           'Age': [25, 30, 35],
           'City': ['New York', 'London', 'Paris']}
   df = pd.DataFrame(data)

   # 使用describe()进行数据摘要统计
   print(df.describe())

   # 计算列的平均值
   print(df.mean())

   # 使用groupby()进行分组操作
   grouped_data = df.groupby('City')
   print(grouped_data.mean())

数据可视化:

复制代码
   import pandas as pd
   import matplotlib.pyplot as plt

   # 创建示例DataFrame
   data = {'Year': [2010, 2011, 2012, 2013, 2014],
           'Sales': [100, 150, 200, 180, 250]}
   df = pd.DataFrame(data)

   # 绘制折线图
   df.plot(x='Year', y='Sales', kind='line')
   plt.show()

   # 绘制柱状图
   df.plot(x='Year', y='Sales', kind='bar')
   plt.show()

这些示例演示了一些常见的数据分析和统计方法。通过使用Pandas的摘要统计函数和分组操作,您可以在数据中获取关键统计信息。此外,Pandas与Matplotlib等库的结合使用,可以进行数据可视化,以更好地理解和传达数据。

请注意,这只是Pandas提供的众多功能之一。根据具体的数据分析需求,还有更多强大的方法和技术可用于数据分析和统计。

相关推荐
数据分享者3 小时前
新闻文本智能识别数据集:40587条高质量标注数据推动自然语言处理技术发展-新闻信息提取、舆情分析、媒体内容理解-机器学习模型训练-智能分类系统
人工智能·自然语言处理·数据挖掘·easyui·新闻文本
python机器学习ML3 小时前
机器学习——16种模型(基础+集成学习)+多角度SHAP高级可视化+Streamlit交互式应用+RFE特征选择+Optuna+完整项目
人工智能·python·机器学习·分类·数据挖掘·scikit-learn·集成学习
熬夜敲代码的小N3 小时前
MySQL数据可视化实战:从SQL雕琢到图表绽放
sql·mysql·信息可视化
YangYang9YangYan4 小时前
2026大专计算机专业学数据分析的价值分析
数据挖掘·数据分析
Liue612312314 小时前
肝脏疾病病理特征识别与分类:基于GFL_R101-DConv-C3-C5_FPN_MS-2x_COCO模型的深度学习方法研究
深度学习·分类·数据挖掘
OLOLOadsd1234 小时前
自然景观分类与识别_YOLO11_C3k2_IDWC改进方法详解
人工智能·分类·数据挖掘
2501_941329724 小时前
棉田方向识别与分类_yolo11-seg-repvit实现_1
人工智能·分类·数据挖掘
高洁015 小时前
知识图谱如何结合 RAG实现更精确的知识问答
人工智能·算法·机器学习·数据挖掘·知识图谱
babe小鑫5 小时前
大专学历进入传媒大厂做内容运营的可行性分析
信息可视化·传媒·内容运营
余丁,微生信5 小时前
在线绘制特殊形状(三角行,菱形,五边形,六边形,椭圆,圆形)聚类热图
数据挖掘·数据可视化·生信分析·科研绘图·科学科普·临床分析·聚类热图