python&Pandas五:数据分析与统计

,Pandas提供了丰富的数据分析和统计功能,使得对数据进行摘要、统计和可视化变得更加容易。以下是一些示例说明:

数据统计和摘要:

复制代码
   import pandas as pd

   # 创建一个示例DataFrame
   data = {'Name': ['Alice', 'Bob', 'Charlie'],
           'Age': [25, 30, 35],
           'City': ['New York', 'London', 'Paris']}
   df = pd.DataFrame(data)

   # 使用describe()进行数据摘要统计
   print(df.describe())

   # 计算列的平均值
   print(df.mean())

   # 使用groupby()进行分组操作
   grouped_data = df.groupby('City')
   print(grouped_data.mean())

数据可视化:

复制代码
   import pandas as pd
   import matplotlib.pyplot as plt

   # 创建示例DataFrame
   data = {'Year': [2010, 2011, 2012, 2013, 2014],
           'Sales': [100, 150, 200, 180, 250]}
   df = pd.DataFrame(data)

   # 绘制折线图
   df.plot(x='Year', y='Sales', kind='line')
   plt.show()

   # 绘制柱状图
   df.plot(x='Year', y='Sales', kind='bar')
   plt.show()

这些示例演示了一些常见的数据分析和统计方法。通过使用Pandas的摘要统计函数和分组操作,您可以在数据中获取关键统计信息。此外,Pandas与Matplotlib等库的结合使用,可以进行数据可视化,以更好地理解和传达数据。

请注意,这只是Pandas提供的众多功能之一。根据具体的数据分析需求,还有更多强大的方法和技术可用于数据分析和统计。

相关推荐
会周易的程序员7 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
零售ERP菜鸟7 小时前
当业务战略摇摆不定:在变化中锚定不变的IT架构之道
信息可视化·职场和发展·架构·创业创新·学习方法·业界资讯
sensen_kiss9 小时前
INT303 Big Data Analysis 大数据分析 Pt.11 模型选择和词向量(Word Embeddings)
大数据·数据挖掘·数据分析
laocooon5238578869 小时前
数据收集, 数据清洗,数据分析,然后可视化,都涉及哪些知识
数据挖掘·数据分析
企业智能研究10 小时前
什么是数据治理?数据治理对企业有什么用?
大数据·人工智能·数据分析·agent
民乐团扒谱机12 小时前
【微实验】数模美赛备赛MATLAB实战:一文速通各种“马尔可夫”(Markov Model)
开发语言·人工智能·笔记·matlab·数据挖掘·马尔科夫链·线性系统
_爱明13 小时前
评估回归模型的指标与理解
人工智能·数据挖掘·回归
逻极13 小时前
数据分析项目:Pandas + SQLAlchemy,从数据库到DataFrame的丝滑实战
python·mysql·数据分析·pandas·sqlalchemy
醉卧考场君莫笑14 小时前
数据分析常用方法:上
数据挖掘·数据分析
小王毕业啦14 小时前
2003-2023年 285个地级市邻接矩阵、经济地理矩阵等8个矩阵数据
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·实证数据