大语言模型占显存的计算和优化

可以优化的地方:

per_device_train_batch_size(相当于batch size,越小显存占的越小)

gradient_accumulation_steps(per_device_train_batch_size*gradient_accumulation_steps=计算梯度的数据数)

gradient_checkpointing(前项激活值里面有很多是不需要存的,可以在反向传播再次计算的)

optim(可以改为adafactor)

冻结参数(只训练下游任务的参数)

将max_length减小

参考代码:

复制代码
train_args = TrainingArguments(output_dir="./checkpoints",      # 输出文件夹
                               per_device_train_batch_size=1,   # 训练时的batch_size
                               gradient_accumulation_steps=32,  # *** 梯度累加 ***
                               gradient_checkpointing=True,     # *** 梯度检查点 *** 前项激活值里面有很多是不需要存的,可以在反向传播再次计算的
                               optim="adafactor",               # *** adafactor优化器 *** 
                               per_device_eval_batch_size=1,    # 验证时的batch_size
                               num_train_epochs=1,              # 训练轮数
                               logging_steps=10,                # log 打印的频率
                               evaluation_strategy="epoch",     # 评估策略
                               save_strategy="epoch",           # 保存策略
                               save_total_limit=3,              # 最大保存数
                               learning_rate=2e-5,              # 学习率
                               weight_decay=0.01,               # weight_decay
                               metric_for_best_model="f1",      # 设定评估指标
                               load_best_model_at_end=True)     # 训练完成后加载最优模型

for name, param in model.bert.named_parameters():
    param.requires_grad = False

tokenized_examples = tokenizer(examples["review"], max_length=32, truncation=True, padding="max_length")
相关推荐
Shawn_Shawn30 分钟前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
技术路上的探险家2 小时前
8 卡 V100 服务器:基于 vLLM 的 Qwen 大模型高效部署实战
运维·服务器·语言模型
33三 三like3 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a3 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者4 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗4 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_4 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信4 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235865 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活