大语言模型占显存的计算和优化

可以优化的地方:

per_device_train_batch_size(相当于batch size,越小显存占的越小)

gradient_accumulation_steps(per_device_train_batch_size*gradient_accumulation_steps=计算梯度的数据数)

gradient_checkpointing(前项激活值里面有很多是不需要存的,可以在反向传播再次计算的)

optim(可以改为adafactor)

冻结参数(只训练下游任务的参数)

将max_length减小

参考代码:

train_args = TrainingArguments(output_dir="./checkpoints",      # 输出文件夹
                               per_device_train_batch_size=1,   # 训练时的batch_size
                               gradient_accumulation_steps=32,  # *** 梯度累加 ***
                               gradient_checkpointing=True,     # *** 梯度检查点 *** 前项激活值里面有很多是不需要存的,可以在反向传播再次计算的
                               optim="adafactor",               # *** adafactor优化器 *** 
                               per_device_eval_batch_size=1,    # 验证时的batch_size
                               num_train_epochs=1,              # 训练轮数
                               logging_steps=10,                # log 打印的频率
                               evaluation_strategy="epoch",     # 评估策略
                               save_strategy="epoch",           # 保存策略
                               save_total_limit=3,              # 最大保存数
                               learning_rate=2e-5,              # 学习率
                               weight_decay=0.01,               # weight_decay
                               metric_for_best_model="f1",      # 设定评估指标
                               load_best_model_at_end=True)     # 训练完成后加载最优模型

for name, param in model.bert.named_parameters():
    param.requires_grad = False

tokenized_examples = tokenizer(examples["review"], max_length=32, truncation=True, padding="max_length")
相关推荐
青松@FasterAI13 分钟前
【Arxiv 大模型最新进展】PEAR: 零额外推理开销,提升RAG性能!(★AI最前线★)
人工智能
huoyingcg20 分钟前
武汉火影数字|VR沉浸式空间制作 VR大空间打造
人工智能·科技·vr·虚拟现实·增强现实
冷冷清清中的风风火火35 分钟前
本地部署DeepSeek的硬件配置建议
人工智能·ai
sauTCc43 分钟前
RAG实现大致流程
人工智能·知识图谱
lqqjuly1 小时前
人工智能驱动的自动驾驶:技术解析与发展趋势
人工智能·机器学习·自动驾驶
山东布谷科技官方1 小时前
AI大模型发展对语音直播交友系统源码开发搭建的影响
人工智能·实时音视频·交友
thinkMoreAndDoMore2 小时前
深度学习(2)-深度学习关键网络架构
人工智能·深度学习·机器学习
山海青风2 小时前
从零开始玩转TensorFlow:小明的机器学习故事 1
人工智能·机器学习·tensorflow
圣心2 小时前
Ollama 快速入门
开发语言·javascript·人工智能
小屁孩大帅-杨一凡2 小时前
如何实现使用DeepSeek的CV模型对管道内模糊、低光照或水渍干扰的图像进行去噪、超分辨率重建。...
图像处理·人工智能·opencv·计算机视觉·超分辨率重建