docker常用指令

一、目录

  1. docker 指令
    1. 创建镜像
    2. 保存镜像
    3. 加载镜像
    4. 删除容器
    5. 删除镜像
    6. 查看容器日志
    7. 查看docker 占用内存情况
    8. 查看docker 根目录(安装路径)
    9. 创建一个容器

二、实现

  1. docker指令
    1 创建镜像

    复制代码
    docker commit  fd69960ed65f  jyf:0.0.1
  1. 保存镜像

    docker save -o my.tar hello-word:latest

  1. 加载镜像

    docker load -i my.tar

  1. 删除容器

    docker rm CONTAINER-ID #删除容器id, 或者>>docker rm name #容器名字
    批量删除
    docker rm $(docker ps -a -q)

  2. 删除镜像

    docker rmi image-id #删除镜像id

  3. 查看容器日志

    docker logs CONTAINER-ID #容器id

  4. 查看docker 占用内存情况

    [root@localhost ~]# docker system df
    TYPE TOTAL ACTIVE SIZE RECLAIMABLE
    Images 81 41 37.12GB 18.87GB (50%)
    Containers 58 18 33.98GB 32.39GB (95%)
    Local Volumes 42 25 1.598GB 1.492GB (93%)
    Build Cache 130 0 562.7MB 562.7MB

  5. 查看docker 根目录(安装路径)

root@dockermain \~\]# docker info Client: Docker Engine - Community Version: 24.0.1 Context: default Debug Mode: false Plugins: buildx: Docker Buildx (Docker Inc.) Version: v0.10.4 Path: /usr/libexec/docker/cli-plugins/docker-buildx compose: Docker Compose (Docker Inc.) Version: v2.18.1 Path: /usr/libexec/docker/cli-plugins/docker-compose scan: Docker Scan (Docker Inc.) Version: v0.23.0 Path: /usr/libexec/docker/cli-plugins/docker-scan Server: Containers: 58 Running: 21 Paused: 0 Stopped: 37 Images: 141 Server Version: 24.0.1 Storage Driver: overlay2 Backing Filesystem: xfs Supports d_type: true Using metacopy: false Native Overlay Diff: true userxattr: false Logging Driver: json-file Cgroup Driver: systemd Cgroup Version: 2 Plugins: Volume: local Network: bridge host ipvlan macvlan null overlay Log: awslogs fluentd gcplogs gelf journald json-file local logentries splunk syslog Swarm: inactive Runtimes: io.containerd.runc.v2 runc Default Runtime: runc Init Binary: docker-init containerd version: 3dce8eb055cbb6872793272b4f20ed16117344f8 runc version: v1.1.7-0-g860f061 init version: de40ad0 Security Options: seccomp Profile: builtin cgroupns Kernel Version: 5.14.0-284.11.1.el9_2.x86_64 Operating System: AlmaLinux 9.2 (Turquoise Kodkod) OSType: linux Architecture: x86_64 CPUs: 16 Total Memory: 31.09GiB Name: dockermain ID: b1b354b2-ccd6-4204-9c1d-78ca30da0712 Docker Root Dir: /home/dockerdata #根目录 Debug Mode: false Experimental: false Insecure Registries: 10.120.130.49:5000 127.0.0.0/8 Registry Mirrors: http://hub-mirror.c.163.com/ Live Restore Enabled: false

  1. 创建一个容器

    镜像选取:docker pull pytorch/pytorch:1.9.1-cuda11.1-cudnn8-devel
    docker run -it --gpus '"device=1,2"' --name leinao -v /tmp:/tmp pytorch/pytorch:pytorch:1.9.1-cuda11.1-cudnn8-devel /bin/bash
    docker run -it --gpus '"device=2,3"' -v /jiayafei_linux/:/home/ --name llm_g pytorch/pytorch:2.1.0-cuda12.1-cudnn8-devel /bin/bash

    docker run -it --gpus '"device=0"' -v /jiayafei_linux/:/home/ --name nodes_0 -p8201:8010 pytorch/pytorch:2.1.0-cuda12.1-cudnn8-devel /bin/bash
    docker run -it --gpus '"device=1"' -v /jiayafei_linux/:/home/ --name nodes_1 -p8202:8010 pytorch/pytorch:2.1.0-cuda12.1-cudnn8-devel /bin/bash

    docker run -it --gpus all --name llm-01 -v /:/home -p8011:8011 -p8012:8012 -p8013:8013 -p8014:8014 pytorch/pytorch:2.1.0-cuda12.1-cudnn8-devel /bin/bash

相关推荐
计算机小手3 小时前
使用 llama.cpp 在本地高效运行大语言模型,支持 Docker 一键启动,兼容CPU与GPU
人工智能·经验分享·docker·语言模型·开源软件
岚天start3 小时前
KubeSphere在线安装单节点K8S集群
docker·容器·kubernetes·k8s·kubesphere·kubekey
xyhshen3 小时前
记录一次K8S跨命名空间访问 xxx.xxx.svc.cluster.local 类似内部服务不通的问题
云原生·容器·kubernetes
栗子~~3 小时前
shell-基于k8s/docker管理容器、监控模型训练所消耗的最大CPU与最大内存脚本
docker·容器·kubernetes
海鸥813 小时前
在k8s中部署seaweedfs,上传文件到seaweedfs方法
云原生·容器·kubernetes
半梦半醒*3 小时前
k8s——pod详解2
linux·运维·docker·容器·kubernetes·负载均衡
AAA小肥杨3 小时前
K8s从Docker到Containerd的迁移全流程实践
docker·容器·kubernetes
DARLING Zero two♡3 小时前
云原生基石的试金石:基于 openEuler 部署 Docker 与 Nginx 的全景实录
nginx·docker·云原生
容器魔方6 小时前
KCD 杭州站 x OpenInfra Days China首次联手!华为云云原生团队与您共探Karmada多模板工作负载多集
云原生·容器·云计算
xx.ii7 小时前
k8s:pod-1
云原生·容器·kubernetes