Pytorch:torch.nn.Module

torch.nn.Module 是 PyTorch 中神经网络模型的基类,它提供了模型定义、参数管理和其他相关功能。

以下是关于 torch.nn.Module 的详细说明:

1. torch.nn.Module 的定义:

torch.nn.Module 是 PyTorch 中所有神经网络模型的基类,它提供了模型定义和许多实用方法。自定义的神经网络模型应该继承自 torch.nn.Module。

2. torch.nn.Module 的原理:

  • 模型组件定义:通过继承 torch.nn.Module,可以在模型中定义各种层、操作和参数。
  • 参数管理:torch.nn.Module 可以跟踪并管理模型的参数,允许对参数进行优化和更新。
  • 前向传播:需要重写 forward 方法,指定模型的前向传播过程。
3. torch.nn.Module 的参数说明:
  • ** init 方法** :用于定义模型结构,在其中初始化各种层和操作。
  • forward 方法:定义模型的前向传播逻辑。
  • super().init():在子类的构造函数中调用父类的构造函数,初始化父类的属性。

4. torch.nn.Module 的用法:

  • 定义一个简单的神经网络模型
python 复制代码
import torch
import torch.nn as nn

class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(10, 5)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.fc(x)
        x = self.relu(x)
        return x

# 创建模型实例
model = SimpleModel()
  • 定义卷积神经网络(CNN)模型
python 复制代码
import torch
import torch.nn as nn

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
        self.relu = nn.ReLU()
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)
        self.fc = nn.Linear(32 * 7 * 7, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.pool(x)
        x = self.conv2(x)
        x = self.relu(x)
        x = self.pool(x)
        x = x.view(-1, 32 * 7 * 7)
        x = self.fc(x)
        return x

# 创建CNN模型实例
cnn_model = CNN()
  • 定义循环神经网络(RNN)模型
python 复制代码
import torch
import torch.nn as nn

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        h0 = torch.zeros(1, x.size(0), self.hidden_size)
        out, _ = self.rnn(x, h0)
        out = self.fc(out[:, -1, :])
        return out

# 创建RNN模型实例
rnn_model = RNN(input_size=10, hidden_size=20, output_size=5)

这些示例展示了使用 torch.nn.Module 来构建不同类型的神经网络模型。

相关推荐
AKAMAI1 小时前
Akamai Cloud客户案例 | Avesha 在 Akamai 云上扩展 Kubernetes 解决方案
人工智能·云计算
wasp5201 小时前
AgentScope Java 核心架构深度解析
java·开发语言·人工智能·架构·agentscope
智算菩萨1 小时前
高效多模态大语言模型:从统一框架到训练与推理效率的系统化理论梳理
大数据·人工智能·多模态
free-elcmacom1 小时前
深度学习<4>高效模型架构与优化器的“效率革命”
人工智能·python·深度学习·机器学习·架构
liliangcsdn2 小时前
python模拟beam search优化LLM输出过程
人工智能·python
算法与编程之美2 小时前
深度学习任务中的多层卷积与全连接输出方法
人工智能·深度学习
Deepoch2 小时前
具身智能产业新范式:Deepoc开发板如何破解机器人智能化升级难题
人工智能·科技·机器人·开发板·具身模型·deepoc
浪子不回头4152 小时前
SGLang学习笔记
人工智能·笔记·学习
王琦03183 小时前
Python 函数详解
开发语言·python
胡伯来了3 小时前
13. Python打包工具- setuptools
开发语言·python