Pytorch:torch.nn.Module

torch.nn.Module 是 PyTorch 中神经网络模型的基类,它提供了模型定义、参数管理和其他相关功能。

以下是关于 torch.nn.Module 的详细说明:

1. torch.nn.Module 的定义:

torch.nn.Module 是 PyTorch 中所有神经网络模型的基类,它提供了模型定义和许多实用方法。自定义的神经网络模型应该继承自 torch.nn.Module。

2. torch.nn.Module 的原理:

  • 模型组件定义:通过继承 torch.nn.Module,可以在模型中定义各种层、操作和参数。
  • 参数管理:torch.nn.Module 可以跟踪并管理模型的参数,允许对参数进行优化和更新。
  • 前向传播:需要重写 forward 方法,指定模型的前向传播过程。
3. torch.nn.Module 的参数说明:
  • ** init 方法** :用于定义模型结构,在其中初始化各种层和操作。
  • forward 方法:定义模型的前向传播逻辑。
  • super().init():在子类的构造函数中调用父类的构造函数,初始化父类的属性。

4. torch.nn.Module 的用法:

  • 定义一个简单的神经网络模型
python 复制代码
import torch
import torch.nn as nn

class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(10, 5)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.fc(x)
        x = self.relu(x)
        return x

# 创建模型实例
model = SimpleModel()
  • 定义卷积神经网络(CNN)模型
python 复制代码
import torch
import torch.nn as nn

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
        self.relu = nn.ReLU()
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)
        self.fc = nn.Linear(32 * 7 * 7, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.pool(x)
        x = self.conv2(x)
        x = self.relu(x)
        x = self.pool(x)
        x = x.view(-1, 32 * 7 * 7)
        x = self.fc(x)
        return x

# 创建CNN模型实例
cnn_model = CNN()
  • 定义循环神经网络(RNN)模型
python 复制代码
import torch
import torch.nn as nn

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        h0 = torch.zeros(1, x.size(0), self.hidden_size)
        out, _ = self.rnn(x, h0)
        out = self.fc(out[:, -1, :])
        return out

# 创建RNN模型实例
rnn_model = RNN(input_size=10, hidden_size=20, output_size=5)

这些示例展示了使用 torch.nn.Module 来构建不同类型的神经网络模型。

相关推荐
Kan先生1 分钟前
对象存储解决方案:MinIO 的架构与代码实战
数据库·python
秋难降1 分钟前
别再用暴力排序了!大小顶堆让「取极值」效率飙升至 O (log n)
python·算法·排序算法
诗人啊_程序员2 分钟前
Flask 路由与视图函数绑定机制
后端·python·flask
CV-杨帆4 分钟前
使用LLaMA-Factory的数据集制作流程与训练微调Qwen3及评估
人工智能
runfarther6 分钟前
搭建LLaMA-Factory环境
linux·运维·服务器·python·自然语言处理·ai编程·llama-factory
@半良人25 分钟前
Deepseek+python自动生成禅道测试用例
开发语言·python·测试用例
AI决策者洞察28 分钟前
Vibe Coding(氛围编程):把代码交给 AI 的瞬间,也交出了未来的维护权——慢慢学AI162
人工智能
德育处主任34 分钟前
终结开发混乱,用 Amazon Q 打造AI助手
人工智能·aigc
铁锚36 分钟前
在MAC环境中安装unsloth
人工智能·python·macos·语言模型
学行库小秘1 小时前
基于门控循环单元的数据回归预测 GRU
人工智能·深度学习·神经网络·算法·回归·gru