图注意网络Graph Attention Network
Leaky ReLU 有利于压低负数对结局的影响。
图注意网络Graph Attention Network的流程
输入向量 h i h_i hi乘上权重矩阵W得到对应的向量 h i ∗ h_i^* hi∗,并将 h i ∗ h_i^* hi∗计算出对应的 a i a_i ai,从而得到最终对结果向量的贡献。
所以有 h = ∑ i h i ∗ ∗ a i h = \sum_i{h_i^{*}*a_i} h=∑ihi∗∗ai
Leaky ReLU 有利于压低负数对结局的影响。
输入向量 h i h_i hi乘上权重矩阵W得到对应的向量 h i ∗ h_i^* hi∗,并将 h i ∗ h_i^* hi∗计算出对应的 a i a_i ai,从而得到最终对结果向量的贡献。
所以有 h = ∑ i h i ∗ ∗ a i h = \sum_i{h_i^{*}*a_i} h=∑ihi∗∗ai