图神经网络|图注意网络Graph Attention Network

图注意网络Graph Attention Network

Leaky ReLU 有利于压低负数对结局的影响。

图注意网络Graph Attention Network的流程

输入向量 h i h_i hi乘上权重矩阵W得到对应的向量 h i ∗ h_i^* hi∗,并将 h i ∗ h_i^* hi∗计算出对应的 a i a_i ai,从而得到最终对结果向量的贡献。

所以有 h = ∑ i h i ∗ ∗ a i h = \sum_i{h_i^{*}*a_i} h=∑ihi∗∗ai

相关推荐
格林威16 分钟前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖1 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站1 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具
AKAMAI1 小时前
Queue-it 为数十亿用户增强在线体验
人工智能·云原生·云计算
索迪迈科技1 小时前
INDEMIND亮相2025科技创变者大会,以机器人空间智能技术解锁具身智能新边界
人工智能·机器人·扫地机器人·空间智能·陪伴机器人
栒U1 小时前
一文从零部署vLLM+qwen0.5b(mac本地版,不可以实操GPU单元)
人工智能·macos·vllm
沫儿笙2 小时前
FANUC发那科焊接机器人铝材焊接节气
人工智能·机器人
THMAIL2 小时前
量化股票从贫穷到财务自由之路 - 零基础搭建Python量化环境:Anaconda、Jupyter实战指南
linux·人工智能·python·深度学习·机器学习·金融
~-~%%2 小时前
从PyTorch到ONNX:模型部署性能提升
人工智能·pytorch·python
xcnn_2 小时前
深度学习基础概念回顾(Pytorch架构)
人工智能·pytorch·深度学习