图神经网络|图注意网络Graph Attention Network

图注意网络Graph Attention Network

Leaky ReLU 有利于压低负数对结局的影响。

图注意网络Graph Attention Network的流程

输入向量 h i h_i hi乘上权重矩阵W得到对应的向量 h i ∗ h_i^* hi∗,并将 h i ∗ h_i^* hi∗计算出对应的 a i a_i ai,从而得到最终对结果向量的贡献。

所以有 h = ∑ i h i ∗ ∗ a i h = \sum_i{h_i^{*}*a_i} h=∑ihi∗∗ai

相关推荐
CareyWYR32 分钟前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信2 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20092 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟2 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播3 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训3 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹3 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55184 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora4 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习
牛阿大4 小时前
关于前馈神经网络
人工智能·深度学习·神经网络