图神经网络|图注意网络Graph Attention Network

图注意网络Graph Attention Network

Leaky ReLU 有利于压低负数对结局的影响。

图注意网络Graph Attention Network的流程

输入向量 h i h_i hi乘上权重矩阵W得到对应的向量 h i ∗ h_i^* hi∗,并将 h i ∗ h_i^* hi∗计算出对应的 a i a_i ai,从而得到最终对结果向量的贡献。

所以有 h = ∑ i h i ∗ ∗ a i h = \sum_i{h_i^{*}*a_i} h=∑ihi∗∗ai

相关推荐
~kiss~8 分钟前
图像处理之膨胀
图像处理·人工智能·计算机视觉
科兽的AI小记30 分钟前
市面上的开源 AI 智能体平台使用体验
人工智能·源码·创业
云雾J视界1 小时前
开源协作2.0:GitHub Discussions+AI重构开发者社区的知识共创生态
人工智能·开源·github·discussions·知识共创·社区知识·ai重构
橘子海全栈攻城狮1 小时前
【源码+文档+调试讲解】基于SpringBoot + Vue的知识产权管理系统 041
java·vue.js·人工智能·spring boot·后端·安全·spring
赋范大模型技术社区1 小时前
OpenAI Agent Kit 全网首发深度解读与上手指南
人工智能·workflow·内置评估
阿里云大数据AI技术1 小时前
云栖实录 | AI 搜索智能探索:揭秘如何让搜索“有大脑”
人工智能·搜索引擎
可触的未来,发芽的智生1 小时前
新奇特:神经网络速比器,小镇债务清零的算法奇缘
javascript·人工智能·python
Aaplloo1 小时前
机器学习作业七
人工智能·机器学习
2501_906519671 小时前
面向边缘计算的轻量化神经网络架构设计与优化
人工智能
mortimer1 小时前
还在被 Windows 路径的大小写和正反斜杠坑?是时候让 pathlib 拯救你的代码了!
人工智能·python