牛客测试链接
问题描述
给定一个n行m列的矩阵,下标从1开始。接下来有q次操作,每次操作输入5个参数x1, y1, x2, y2, k,表示把以(x1, y1)为左上角,(x2,y2)为右下角的子矩阵的每个元素都加上k。请输出操作后的矩阵。
输入描述
第一行包含三个整数n,m,q。接下来n行,每行m个整数,代表矩阵的元素。接下来q行,每行5个整数x1, y1, x2, y2, k,分别代表这次操作的参数。
输出描述
输出n行,每行m个数,每个数用空格分开,表示这个矩阵。
算法思路
二维差分算法是一种用于解决矩阵区间更新问题的高效算法。它通过预处理和差分数组的方式,将区间更新的时间复杂度从O(nm)降低到O(1)。
具体步骤如下:
- 定义一个大小为(n+1)*(m+1)的差分数组diff,用于存储每个位置的差分值。
- 遍历矩阵的每个元素,将其加到差分数组对应位置上。
- 对差分数组进行预处理,计算每个位置的前缀和,即diff[i][j]表示原矩阵中(1,1)到(i,j)位置的元素和。
- 对每次操作,将对应区间的四个角的差分值进行更新,即diff[a][b] += k, diff[c+1][d+1] += k, diff[c+1][b] -= k, diff[a][d+1] -= k。
- 对差分数组进行再次预处理,计算每个位置的前缀和,即diff[i][j]表示操作后的矩阵中(1,1)到(i,j)位置的元素和。
- 输出操作后的矩阵。
代码实现
java
import java.util.Scanner;
import java.io.*;
public class Main {
static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
static StreamTokenizer sr = new StreamTokenizer(in);
static int MAXN = 1005;
static int n, m, q;
static long[][] diff = new long[MAXN][MAXN];
static void build() {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
diff[i][j] += diff[i - 1][j] + diff[i][j - 1] - diff[i - 1][j - 1];
}
}
}
static void clear() {
for (int i = 1; i <= n + 1; i++) {
for (int j = 1; j <= m + 1; j++) {
diff[i][j] = 0;
}
}
}
static void add(int a, int b, int c, int d, int k) {
diff[a][b] += k;
diff[c + 1][d + 1] += k;
diff[c + 1][b] -= k;
diff[a][d + 1] -= k;
}
static int nextInt() throws IOException {
sr.nextToken();
return (int)sr.nval;
}
public static void main(String[] args) throws IOException {
n = nextInt();
m = nextInt();
q = nextInt();
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
add(i, j, i, j, nextInt());
}
}
while (q-- > 0) {
int a = nextInt();
int b = nextInt();
int c = nextInt();
int d = nextInt();
int k = nextInt();
add(a, b, c, d, k);
}
build();
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
out.print(diff[i][j] + " ");
}
out.println();
out.flush();
}
clear();
}
}
总结
二维差分算法是一种高效解决矩阵区间更新问题的算法。通过预处理和差分数组的方式,可以将区间更新的时间复杂度从O(nm)降低到O(1)。在实际应用中,可以大大提高算法的效率。