【scikit-learn基础】--『监督学习』之 层次聚类

层次聚类 算法是机器学习中常用的一种无监督学习算法,它用于将数据分为多个类别或层次。

该方法在计算机科学、生物学、社会学等多个领域都有广泛应用。

层次聚类 算法的历史可以追溯到上世纪60年代,当时它主要被用于社会科学中。

随着计算机技术的发展,这种方法在90年代得到了更为广泛的应用。

1. 算法概述

层次聚类 的基本原理是创建一个层次的聚类,通过不断地合并或分裂已存在的聚类来实现。

它分为两种策略:

  1. 凝聚策略:初始时将每个点视为一个簇,然后逐渐合并相近的簇
  2. 分裂策略:开始时将所有点视为一个簇,然后逐渐分裂

scikit-learn中,层次聚类 的策略有4种

  1. ward:默认策略,也就是最小方差法。它倾向于合并那些使得合并后的簇内部方差最小的两个簇
  2. complete:计算两个簇之间的距离时,考虑两个簇中距离最远的两个样本之间的距离
  3. average:计算两个簇之间的距离时,考虑两个簇中所有样本之间距离的平均值
  4. single:计算两个簇之间的距离时,考虑两个簇中距离最近的两个样本之间的距离

2. 创建样本数据

下面创建月牙形状数据来看看层次聚类的各个策略之间的比较。

python 复制代码
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt

ax = plt.subplot()

X, y = make_moons(noise=0.05, n_samples=1000)
ax.scatter(X[:, 0], X[:, 1], marker="o", c=y, s=25, cmap=plt.cm.prism)

plt.show()

关于各种样本数据的生成,可以参考:TODO

3. 模型训练

用四种不同的策略来训练上面月牙形状的样本数据。

python 复制代码
from sklearn.cluster import AgglomerativeClustering

# 定义
regs = [
    AgglomerativeClustering(linkage="ward"),
    AgglomerativeClustering(linkage="complete"),
    AgglomerativeClustering(linkage="single"),
    AgglomerativeClustering(linkage="average"),
]

# 训练模型
for reg in regs:
    reg.fit(X, y)

fig, axes = plt.subplots(nrows=2, ncols=2)
fig.set_size_inches((10, 8))

# 绘制聚类之后的结果
axes[0][0].scatter(
    X[:, 0], X[:, 1], marker="o", c=regs[0].labels_, s=25, cmap=plt.cm.prism
)
axes[0][0].set_title("ward 策略")

axes[0][1].scatter(
    X[:, 0], X[:, 1], marker="o", c=regs[1].labels_, s=25, cmap=plt.cm.prism
)
axes[0][1].set_title("complete 策略")

axes[1][0].scatter(
    X[:, 0], X[:, 1], marker="o", c=regs[2].labels_, s=25, cmap=plt.cm.prism
)
axes[1][0].set_title("single 策略")

axes[1][1].scatter(
    X[:, 0], X[:, 1], marker="o", c=regs[3].labels_, s=25, cmap=plt.cm.prism
)
axes[1][1].set_title("average 策略")

plt.show()

从结果可以看出,single策略 效果最好,它聚类的结果与原始数据的分类情况最为接近。

不过,这并不能说明single策略 由于其它策略,只能说明single策略最适合上面的样本数据。

4. 总结

层次聚类 在许多场景中都得到了应用,例如图像分割、文档聚类、生物信息学中的基因聚类等。

它特别适合那些需要多层次结构的应用。

层次聚类 的最大优势 在于它提供了一种层次结构的聚类,这对于许多应用来说是非常自然的,它能够展示数据在不同粒度下的聚类结果。

但它也存在一些缺点

首先,它的计算复杂度 相对较高,特别是当数据量很大时;

其次,一旦做出合并或分裂的决策,就不能撤销,这可能导致错误的累积

此外,确定何时停止合并或分裂也是一个挑战。

相关推荐
灏瀚星空16 分钟前
从基础到实战的量化交易全流程学习:1.3 数学与统计学基础——概率与统计基础 | 基础概念
笔记·python·学习·金融·概率论
Hellohistory22 分钟前
HOTP 算法与实现解析
后端·python
伊织code23 分钟前
cached-property - 类属性缓存装饰器
python·缓存·cache·装饰器·ttl·property·cached-property
明明跟你说过39 分钟前
深度学习常见框架:TensorFlow 与 PyTorch 简介与对比
人工智能·pytorch·python·深度学习·自然语言处理·tensorflow
搏博41 分钟前
专家系统的基本概念解析——基于《人工智能原理与方法》的深度拓展
人工智能·python·深度学习·算法·机器学习·概率论
yzx99101342 分钟前
决策树随机深林
人工智能·python·算法·决策树·机器学习
梓羽玩Python1 小时前
月之暗面最新开源模型!Kimi-Audio:革新多模态音频处理,统一音频理解、生成与对话!
人工智能·python·github
noravinsc1 小时前
django admin 去掉新增 删除
python·django·sqlite
Y1nhl1 小时前
力扣hot100_子串_python版本
开发语言·python·算法·leetcode·职场和发展
roc-ever1 小时前
用Python做有趣的AI项目 3:黑白图像自动上色(AI 上色器)
开发语言·人工智能·python