论文阅读 BERT GPT - transformer在NLP领域的延伸

文章目录

不会写的很详细,只是为了帮助我理解在CV领域transformer的拓展

1 摘要

1.1 BERT - 核心

双向 编码器 加上mask做完形填空超大模型无监督预训练 需要整个模型作为pretrain weight到下游任务做fintune

1.2 GPT - 核心

自回归 解码器 无需训练 只需Prompt

2 模型架构

2.1 概览


3 区别

3.1 finetune和prompt

BERT需要全部参数进行训练

GPT不需要训练即可完成下游任务

3.2 transformer及训练

BERT使用双向的编码器

GPT使用自回归的解码器

总结

总结个毛

相关推荐
uncle_ll9 小时前
李宏毅NLP-8-语音模型
人工智能·自然语言处理·语音识别·语音模型·lm
Liudef069 小时前
FLUX.1-Kontext 高效训练 LoRA:释放大语言模型定制化潜能的完整指南
人工智能·语言模型·自然语言处理·ai作画·aigc
s1ckrain14 小时前
【论文阅读】VARGPT-v1.1
论文阅读·多模态大模型·统一生成模型
DeepSeek大模型官方教程16 小时前
NLP之文本纠错开源大模型:兼看语音大模型总结
大数据·人工智能·ai·自然语言处理·大模型·产品经理·大模型学习
Catching Star17 小时前
【论文笔记】【强化微调】Vision-R1:首个针对多模态 LLM 制定的强化微调方法,以 7B 比肩 70B
论文阅读·强化微调
王上上17 小时前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
onceco1 天前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
s1ckrain1 天前
【论文阅读】DeepEyes: Incentivizing “Thinking with Images” via Reinforcement Learning
论文阅读·强化学习·多模态大模型·vlm
陈敬雷-充电了么-CEO兼CTO1 天前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer
AI让世界更懂你2 天前
【ACL系列论文写作指北15-如何进行reveiw】-公平、公正、公开
人工智能·自然语言处理