OpenCV-22高斯滤波

一、高斯函数的基础

要理解高斯滤波首先要直到什么是高斯函数,高斯函数是符合高斯分布的(也叫正态分布)的数据的概率密度函数。

高斯函数的特点是以x轴某一点(这一点称为均值)为对称轴,越靠近中心数据发生的概率越高,最终形成一个两边平缓,中间陡峭的钟型(有的地方也叫帽子)图形。

高斯函数的一般形式:以(0,0)和(0,0,0)为中点:

高斯滤波就是使用符合高斯分布的卷积核对图片进行卷积操作,所以高斯滤波的重点是如何计算符合高斯分布的卷积核,即高斯模板:

假设中心点的坐标为(0,0),那么取距离它最近的8个坐标,为了计算,需要设定 = 1.5,则模糊半径为1的高斯模板就如下所示:

我们可以观察到越靠近中心值,数值越大,越边缘的数值越小,符合高斯分布的特点。

通过高斯函数计算得到的是概率函数密度, 所以我们还有确保着九个点加起来为1,这9个点的权重总和等于0.4787147, 因此上面9个值还要分别除以0.4787147, 得到最终的高斯模板。

注意:有的整数的高斯模板是在归一化后的高斯模板的举出是每个数除上左上角的数值,然后取证。

有了卷积核,计算高斯滤波就简单了,假设现在有9个像素点,灰度值(0-255)的高斯滤波计算如下:

二、在OpenCV中使用高斯滤波

使用API---GaussiamBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]])

--- kernel:高斯核

---sigmaX:x轴的标准差(一般只需要设定一个标准差就行)

---sigmaY:Y轴的标准差,默认为0,此时sigmaY = sigmaX

如果没有指定sigmaY的值,会分别从Ksize的宽度和高度计算sigma,此时sigma = 0

选择不同的sigma的值会得到不同的平滑效果,sigma越大,平滑效果越明显。

示例代码如下:

复制代码
import cv2
import numpy as np

dog = cv2.imread("dog.png")
NEW_DOG = cv2.resize(dog, (640, 480))
new_dog = cv2.GaussianBlur(NEW_DOG, (5, 5), sigmaX=10)

cv2.imshow("img", np.hstack((NEW_DOG, new_dog)))
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

相关推荐
滨HI04 分钟前
opencv 计算面积、周长
人工智能·opencv·计算机视觉
Owen__z6 分钟前
GEE统计特定区域特定时间上的Landsat/Sentinel的影像信息
python·sentinel·gee·geemap·landsat
OpenBayes12 分钟前
OCR 新范式!DeepSeek 以「视觉压缩」替代传统字符识别;Bald Classification数据集助力高精度人像分类
人工智能·深度学习·分类·数据挖掘·ocr·数据集·deepseek
亚马逊云开发者14 分钟前
Agentic AI基础设施实践经验系列(四):MCP服务器从本地到云端的部署演进
人工智能
知识搬运工人15 分钟前
深入解析U-Net
人工智能
川石课堂软件测试15 分钟前
Python | 高阶函数基本应用及Decorator装饰器
android·开发语言·数据库·python·功能测试·mysql·单元测试
weixin_4211334115 分钟前
深度强化学习,用神经网络代替 Q-table
人工智能·深度学习·神经网络
lx74160269816 分钟前
面试可能的问题(自用)
人工智能·自然语言处理
数字化脑洞实验室21 分钟前
智能决策算法的核心原理是什么?
人工智能·算法·机器学习
流烟默21 分钟前
机器学习中拟合、欠拟合、过拟合是什么
人工智能·算法·机器学习