OpenCV-22高斯滤波

一、高斯函数的基础

要理解高斯滤波首先要直到什么是高斯函数,高斯函数是符合高斯分布的(也叫正态分布)的数据的概率密度函数。

高斯函数的特点是以x轴某一点(这一点称为均值)为对称轴,越靠近中心数据发生的概率越高,最终形成一个两边平缓,中间陡峭的钟型(有的地方也叫帽子)图形。

高斯函数的一般形式:以(0,0)和(0,0,0)为中点:

高斯滤波就是使用符合高斯分布的卷积核对图片进行卷积操作,所以高斯滤波的重点是如何计算符合高斯分布的卷积核,即高斯模板:

假设中心点的坐标为(0,0),那么取距离它最近的8个坐标,为了计算,需要设定 = 1.5,则模糊半径为1的高斯模板就如下所示:

我们可以观察到越靠近中心值,数值越大,越边缘的数值越小,符合高斯分布的特点。

通过高斯函数计算得到的是概率函数密度, 所以我们还有确保着九个点加起来为1,这9个点的权重总和等于0.4787147, 因此上面9个值还要分别除以0.4787147, 得到最终的高斯模板。

注意:有的整数的高斯模板是在归一化后的高斯模板的举出是每个数除上左上角的数值,然后取证。

有了卷积核,计算高斯滤波就简单了,假设现在有9个像素点,灰度值(0-255)的高斯滤波计算如下:

二、在OpenCV中使用高斯滤波

使用API---GaussiamBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]])

--- kernel:高斯核

---sigmaX:x轴的标准差(一般只需要设定一个标准差就行)

---sigmaY:Y轴的标准差,默认为0,此时sigmaY = sigmaX

如果没有指定sigmaY的值,会分别从Ksize的宽度和高度计算sigma,此时sigma = 0

选择不同的sigma的值会得到不同的平滑效果,sigma越大,平滑效果越明显。

示例代码如下:

复制代码
import cv2
import numpy as np

dog = cv2.imread("dog.png")
NEW_DOG = cv2.resize(dog, (640, 480))
new_dog = cv2.GaussianBlur(NEW_DOG, (5, 5), sigmaX=10)

cv2.imshow("img", np.hstack((NEW_DOG, new_dog)))
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

相关推荐
JoannaJuanCV8 分钟前
大语言模型基石:Transformer
人工智能·语言模型·transformer
飞哥数智坊11 分钟前
Qoder vs CodeBuddy,刚起步就收费,值吗?
人工智能·ai编程
强盛小灵通专卖员12 分钟前
闪电科创,深度学习辅导
人工智能·sci·小论文·大论文·延毕
诗句藏于尽头13 分钟前
Django模型与数据库表映射的两种方式
数据库·python·django
通街市密人有18 分钟前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
大千AI助手22 分钟前
TruthfulQA:衡量语言模型真实性的基准
人工智能·语言模型·自然语言处理·llm·模型评估·truthfulqa·事实性基准
蚂蚁RichLab前端团队22 分钟前
🚀🚀🚀 RichLab - 花呗前端团队招贤纳士 - 【转岗/内推/社招】
前端·javascript·人工智能
智数研析社22 分钟前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
扯淡的闲人26 分钟前
多语言编码Agent解决方案(5)-IntelliJ插件实现
开发语言·python
救救孩子把34 分钟前
2-机器学习与大模型开发数学教程-第0章 预备知识-0-2 数列与级数(收敛性、幂级数)
人工智能·数学·机器学习