2022-ECCV-Explaining Deepfake Detection by Analysing Image Matching

一、研究背景

1.大量工作将深度伪造检测作为一个二分类任务并取得了良好的性能。

2.理解模型如何在二分类标签的监督下学习伪造相关特征仍难是个艰巨的任务。

3.视觉概念:具有语义的人脸区域,如嘴、鼻子、眼睛。

二、研究目标

1.验证假设,并从图像匹配的角度评估视觉概念的关系,以此解释检测模型的预测结果。

2.解释深度伪造检测模型如何在二分类标签的监督下学习伪影特征。

3.习得更好的检测模型,提高在压缩视频上的伪造检测性能。

三、研究动机(3种假设)

1.检测模型将既不与原图相关也不与目标图相关的视觉概念看作是与伪造相关的视觉概念,性能良好的检测模型应该基于源/目标-无关的视觉概念来判断真伪。

2.在标签的监督下,伪造-原图-目标图匹配可以帮助丢弃伪造无关视觉特征,隐式学习伪造相关的视觉概念。

3.利用原始训练集进行图片匹配习得的视觉概念容易受到视频压缩的影响。

四、技术路线

假设1:

  1. 设计源编码器 v s v_s vs和目标编码器 v t v_t vt区分图片中的视觉概念。
  2. 令伪造图片与相应源/目标图片具有相同属性标签,以此训练编码器。
  3. 用Shapley value评估视觉概念的区域贡献。例如:
    对输入图片做 L × L L\times L L×L区域划分,得到 G = { g 11 , ... , g L L } G=\{g_{11},\dots,g_{LL}\} G={g11,...,gLL}。
    当 ϕ v d ( g i j ∣ G ) > 0 \phi_{v_{d}}(g_{ij}\mid G)>0 ϕvd(gij∣G)>0时,证明区域 g i j g_{ij} gij与伪造相关。
  4. 评估视觉概念间的关系:
    利用掩膜操作定位源/目标相关区域:
    M τ = I ( m a x ( ϕ v s , ϕ v s ) ) > τ M_{\tau}=I(max(\phi_{v{s}},\phi_{v{s}}))>\tau Mτ=I(max(ϕvs,ϕvs))>τ
    评估视觉概念间的交叉强度,第一项为无关区域的相关强度,第二项为相关区域的相关强度:

假设2:

设置两种训练集:

第一种:真实图片仅包含和伪造图片相关的原图/目标图

第二种:真实图片与伪造图片不相关

假设3:

评估稳定性:

对于压缩图片,由源/目标编码器习得的视觉概念更加稳定。

FST-Matching Deepfake Detection Model:

直接将源/目标无关特征从源/目标视觉概念中分离出来去进行真伪检测可以提升在压缩视频上的性能。

  1. 习得源特征 f s f_s fs和目标特征 f t f_t ft
  2. 利用通道注意力自动解纠缠源/目标无关特征 f s i r f_s^{ir} fsir、 f t i r f_t^{ir} ftir和源/目标相关特征 f s r f_s^{r} fsr、 f t r f_t^{r} ftr
  3. 设置 Fake-Source/Target Pair Verification module验证解纠缠的有效性,令源/目标图片的 f r f^{r} fr具有和原始图片相同的属性标签,并进行属性预测
  4. 增强 [ f s i r , f t i r ] [f_s^{ir}, f_t^{ir}] [fsir,ftir]的交互, h h h为预测模块,令联合预测损失小,单一预测损失大,0输入的影响小。
  5. 总损失

五、实验结果

六、思考

  1. 解纠缠:伪造无关特征包含身份属性,伪造相关特征联合区分真假
  2. 图匹配:在匹配中去除相同属性的干扰
  3. 输入:上下支路均有源、目标、伪造图片
相关推荐
无你想你28 分钟前
DataWhale大语言模型-大模型技术基础
人工智能·语言模型·自然语言处理
背太阳的牧羊人28 分钟前
LLaMA-Factory 训练数据默认使用 instruction、input、output 三个 key
人工智能·llama·大模型微调
后端小肥肠37 分钟前
基于RAGFlow本地部署DeepSpeek-R1大模型与知识库:从配置到应用的全流程解析
人工智能·ai
struggle20251 小时前
Browser Copilot 开源浏览器扩展,使用现有或定制的 AI 助手来完成日常 Web 应用程序任务。
人工智能·自然语言处理·数据分析·自动化·copilot·deepseek
Sheakan1 小时前
【文献阅读】DeepRAG:大语言模型的检索增强推理新范式
人工智能·语言模型·自然语言处理
meisongqing1 小时前
目前人工智能的发展,判断10年、20年后的人工智能发展的主要方向,或者带动的主要产业
人工智能
李加号pluuuus1 小时前
【数据集】CelebA Dataset
人工智能·计算机视觉
pen-ai1 小时前
【NLP】 9. 处理创造性词汇 & 词组特征(Creative Words & Features Model), 词袋模型处理未知词,模型得分
人工智能·深度学习·自然语言处理
寻丶幽风1 小时前
论文阅读笔记——QLORA: Efficient Finetuning of Quantized LLMs
论文阅读·人工智能·笔记·深度学习·语言模型