题目描述:
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
最近公共祖先的定义为:"对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。"
题目解答:
cpp
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == nullptr || root == p || root == q)
return root;
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);
if(left == nullptr||right == nullptr)
return left==nullptr?right:left;
return root;
}
};
题目思路:
递归左右子树,寻找 p 和 q 的最近公共祖先。
如果左子树或右子树中有一个是空(也就是说,这个子树没有公共祖先),那么返回非空的子树中的结果。
最后,如果左子树和右子树都找到了公共祖先(也就是说,它们都不为空),那么当前的节点 root 就是 p 和 q 的最近公共祖先。所以,返回 root。