【论文阅读】Latent Consistency Models (LDMs)、LCM-LoRa

文章目录

  • Introduction
  • Preliminaries
    • [Diffusion Models](#Diffusion Models)
    • [Consistency Models](#Consistency Models)
  • [Latent Consistency Models](#Latent Consistency Models)
    • [Consistency Distillation in the Latent Space](#Consistency Distillation in the Latent Space)
    • [One-Stage Guided Distillation by Solving Augmented PF-ODE](#One-Stage Guided Distillation by Solving Augmented PF-ODE)
    • [Accelerating Distillation with Skipping Time Steps](#Accelerating Distillation with Skipping Time Steps)
    • [Latent Consistency Fine-tuing for Customized Dataset](#Latent Consistency Fine-tuing for Customized Dataset)
  • Experiment
  • LCM-LoRA

Introduction

  • 提出 Latent Consistency Models (LCMs),图像生成速度更快、质量更好.
  • 提出一种简单高效的 one-stage guided consistency distillation 方法,用极少的采样步数蒸馏 Stable Diffusion,进一步提出 skipping-step 技术加快收敛过程.
  • 介绍针对 LCMs 的微调方法.

Preliminaries

Diffusion Models

使用 empirical PF-ODE 表示模型的逆扩散过程:

d x t d t = f ( t ) x t + g 2 ( t ) 2 σ t ϵ θ ( x t , t ) \large \frac{\mathrm{d}x_t}{\mathrm{d}t}=f(t)x_t+\frac{g^2(t)}{2\sigma_t}\epsilon_{\theta}(x_t,t) dtdxt=f(t)xt+2σtg2(t)ϵθ(xt,t)

对于 class-conditioned 扩散模型,Classifier-Free Guidance (CFG) 有效地提高了生成样本的质量,用 ω \omega ω表示 CFG 系数,原始的噪声预测模型可以被替换为:

ϵ θ ^ ( z t , ω , c , t ) = ( 1 + ω ) ϵ θ ( z t , c , t ) − ω ϵ θ ( z t , ∅ , t ) \large\hat{\epsilon_{\theta}}(z_t,\omega,c,t)=(1+\omega)\epsilon_{\theta}(z_t,c,t)-\omega\epsilon_{\theta}(z_t,\varnothing,t) ϵθ^(zt,ω,c,t)=(1+ω)ϵθ(zt,c,t)−ωϵθ(zt,∅,t)

Consistency Models

令 F θ ( x , t ) F_{\theta}(\mathrm{x}, t) Fθ(x,t)表示任意形式的神经网络,使用 sikp connection 可以将模型表示为:

f θ ( x , t ) = c s k i p ( t ) x + c o u t ( t ) F θ ( x , t ) \large f_{\theta}(\mathrm{x}, t)=c_{skip}(t)\mathrm{x}+c_{out}(t)F_{\theta}(\mathrm{x},t) fθ(x,t)=cskip(t)x+cout(t)Fθ(x,t)

其中边界条件为 c s k i p ( ϵ ) = 1 c_{skip}(\epsilon)=1 cskip(ϵ)=1, c o u t ( ϵ ) = 0 c_{out}(\epsilon)=0 cout(ϵ)=0.

损失函数为:

L C D N ( θ , θ − ; ϕ ) = E [ λ ( t n ) d ( f θ ( x t n + 1 , t n + 1 ) , f θ − ( x ^ t n ϕ , t n ) ] \large \mathcal{L}{CD}^{N}(\theta, \theta^-;\phi)=\mathbb{E}\left[\lambda(t_n)d(f{\theta}(\mathrm{x}{t{n+1}},t_{n+1}),f_{\theta^-}(\hat{\mathrm{x}}_{t_n}^{\phi}, t_n) \right] LCDN(θ,θ−;ϕ)=E[λ(tn)d(fθ(xtn+1,tn+1),fθ−(x^tnϕ,tn)]

θ − \theta^- θ−使用 EMA 更新,计算公式如下:

θ − ← s t o p g a r d ( μ θ − + ( 1 − μ ) θ ) \large \theta^- \leftarrow \mathrm{stopgard}(\mu\theta^-+(1-\mu)\theta) θ−←stopgard(μθ−+(1−μ)θ)

x ^ t n ϕ \hat{\mathrm{x}}{t_n}^{\phi} x^tnϕ是从 x t n + 1 \mathrm{x}{t_{n+1}} xtn+1到 x t n \mathrm{x}{t{n}} xtn的估计,计算公式如下:

x ^ t n ϕ = x t n + 1 + ( t n − t n + 1 ) Φ ( x t n + 1 , t n + 1 ; ϕ ) \large \hat{\mathrm{x}}{t_n}^{\phi}=\mathrm{x}{t_{n+1}} + (t_n-t_{n+1})\Phi(\mathrm{x}{t{n+1}}, t_{n+1};\phi) x^tnϕ=xtn+1+(tn−tn+1)Φ(xtn+1,tn+1;ϕ)

Latent Consistency Models

Consistency Distillation in the Latent Space

针对类似 Stable Diffusion的隐空间上的条件扩散模型,其 PF- ODE 逆过程可以表示为:

d z t d t = f ( t ) z t + g 2 ( t ) 2 σ t ϵ θ ( z t , c , t ) \large \frac{\mathrm{d}z_t}{\mathrm{d}t}=f(t)z_t+\frac{g^2(t)}{2\sigma_t}\epsilon_{\theta}(z_t,c,t) dtdzt=f(t)zt+2σtg2(t)ϵθ(zt,c,t)

其中 z t z_t zt是图像隐向量, c c c是给定的条件. 类似CM中的做法,引入 f θ : ( z t , c , t ) ↦ z 0 f_{\theta}:(z_t,c,t)\mapsto z_0 fθ:(zt,c,t)↦z0,将其参数化为:

f θ ( z , c , t ) = c s k i p ( t ) z + c o u t ( t ) ( z − σ t ϵ ^ θ ( z , c , t ) α t ) \large f_{\theta}(z,c,t)=c_{skip}(t)z+c_{out}(t)\left(\frac{z-\sigma_t\hat{\epsilon}{\theta}(z,c,t)}{\alpha{t}} \right) fθ(z,c,t)=cskip(t)z+cout(t)(αtz−σtϵ^θ(z,c,t))

具体的参数化形式由被蒸馏的扩散模型决定.

损失函数表示为:

L C D ( θ , θ − ; Ψ ) = E z , c , n [ d ( f θ ( z t n + 1 , c , t n + 1 ) , f θ − ( z ^ t n Ψ , c , t n ) ] \large \mathcal{L}{CD}(\theta,\theta^-;\Psi)=\mathbb{E}{z,c,n}\left[d(f_{\theta}(z_{t_{n+1}},c,t_{n+1}),f_{\theta^-}(\hat{z}_{t_n}^{\Psi},c,t_n) \right] LCD(θ,θ−;Ψ)=Ez,c,n[d(fθ(ztn+1,c,tn+1),fθ−(z^tnΨ,c,tn)]

z ^ t n Ψ \hat{z}{t_n}^{\Psi} z^tnΨ为 z t n + 1 z{t_{n+1}} ztn+1到 z t n z_{t_{n}} ztn的估计,计算方法如下:

z ^ t n Ψ − z t n + 1 = ∫ t n + 1 t n ( f ( t ) z t + g 2 ( t ) 2 σ t ϵ θ ( z t , c , t ) ) d t ≈ Ψ ( z t n + 1 , t n + 1 , t n , c ) \large \hat{z}{t_n}^{\Psi}-z{t_{n+1}}=\int_{t_{n+1}}^{t_n}\left(f(t)z_t+\frac{g^2(t)}{2\sigma_t}\epsilon_{\theta}(z_t,c,t)\right)\mathrm{d}t\approx\Psi(z_{t_{n+1}}, t_{n+1}, t_n, c) z^tnΨ−ztn+1=∫tn+1tn(f(t)zt+2σtg2(t)ϵθ(zt,c,t))dt≈Ψ(ztn+1,tn+1,tn,c)

One-Stage Guided Distillation by Solving Augmented PF-ODE

使用CFG,损失函数可以表示为:

L C D ( θ , θ − ; Ψ ) = E z , c , n [ d ( f θ ( z t n + 1 , ω , c , t n + 1 ) , f θ − ( z ^ t n Ψ , ω , c , t n ) ] \large \mathcal{L}{CD}(\theta,\theta^-;\Psi)=\mathbb{E}{z,c,n}\left[d(f_{\theta}(z_{t_{n+1}},\omega,c,t_{n+1}),f_{\theta^-}(\hat{z}_{t_n}^{\Psi},\omega,c,t_n) \right] LCD(θ,θ−;Ψ)=Ez,c,n[d(fθ(ztn+1,ω,c,tn+1),fθ−(z^tnΨ,ω,c,tn)]

z ^ t n Ψ \hat{z}_{t_n}^{\Psi} z^tnΨ的计算方法更新为

z ^ t n Ψ − z t n + 1 ≈ ( 1 + ω ) Ψ ( z t n + 1 , t n + 1 , t n , c ) − Ψ ( z t n + 1 , t n + 1 , t n , ∅ ) \large \hat{z}{t_n}^{\Psi}-z{t_{n+1}}\approx(1+\omega)\Psi(z_{t_{n+1}}, t_{n+1}, t_n, c)-\Psi(z_{t_{n+1}}, t_{n+1}, t_n, \varnothing) z^tnΨ−ztn+1≈(1+ω)Ψ(ztn+1,tn+1,tn,c)−Ψ(ztn+1,tn+1,tn,∅)

Accelerating Distillation with Skipping Time Steps

扩散模型例如Stable Diffusion的总时间步长有 1000 1000 1000步,LCM在训练的采样需要覆盖这 1000 1000 1000步,既然相邻时间步之间的差值小,那么 f θ ( z t n + 1 , c , t n + 1 ) f_{\theta}(z_{t_{n+1}},c,t_{n+1}) fθ(ztn+1,c,tn+1)和 f θ ( z t n , c , t n ) f_{\theta}(z_{t_{n}},c,t_{n}) fθ(ztn,c,tn)之间的差距也小,这导致计算出来的损失小、收敛慢.

作者介绍了skipping-step 方法,原来度量时间步 t n + 1 t_{n+1} tn+1和 t n t_n tn间的差距,改为度量 t n + k t_{n+k} tn+k和 t n t_n tn间的差距. 至此,LCM训练的损失函数为

L C D ( θ , θ − ; Ψ ) = E z , c , n [ d ( f θ ( z t n + k , ω , c , t n + k ) , f θ − ( z ^ t n Ψ , ω , c , t n ) ] \large \mathcal{L}{CD}(\theta,\theta^-;\Psi)=\mathbb{E}{z,c,n}\left[d(f_{\theta}(z_{t_{n+k}},\omega,c,t_{n+k}),f_{\theta^-}(\hat{z}_{t_n}^{\Psi},\omega,c,t_n) \right] LCD(θ,θ−;Ψ)=Ez,c,n[d(fθ(ztn+k,ω,c,tn+k),fθ−(z^tnΨ,ω,c,tn)]

z ^ t n Ψ \hat{z}_{t_n}^{\Psi} z^tnΨ中 Ψ ( ⋅ , ⋅ , ⋅ , ⋅ ) \Psi(·,·,·,·) Ψ(⋅,⋅,⋅,⋅)的计算方法对应跨 k k k步,作者分别使用了DDIMDPM-SolverDPM-Solver++ 作为 PF-ODE solver,以DDIM为例,其对应的 Ψ ( ⋅ , ⋅ , ⋅ , ⋅ ) \Psi(·,·,·,·) Ψ(⋅,⋅,⋅,⋅)计算方法为

Ψ ( z t n + k , t n + k , t n , c ) = α t n α t n + k z t n + k − σ t n ( σ t n + k α t n α t n + k σ t n − 1 ) ϵ ^ θ ( z t n + k , c , t n + k ) − z t n + k \large \Psi(z_{t_{n+k}}, t_{n+k}, t_n, c)=\frac{\alpha_{t_n}}{\alpha_{t_{n+k}}}z_{t_{n+k}}-\sigma_{t_n}\left(\frac{\sigma_{t_{n+k}}\alpha_{t_n}}{\alpha_{t_{n+k}}\sigma_{t_n}}-1\right)\hat{\epsilon}{\theta}(z{t_{n+k}},c,t_{n+k})-z_{t_{n+k}} Ψ(ztn+k,tn+k,tn,c)=αtn+kαtnztn+k−σtn(αtn+kσtnσtn+kαtn−1)ϵ^θ(ztn+k,c,tn+k)−ztn+k

再加入CFGskipping-step之后,LCM的训练过程用如下算法所示:

多步采样算法如下:

Latent Consistency Fine-tuing for Customized Dataset

全量微调算法:

Experiment

测试数据集使用 LAION-Aesthetic-6+ 和 LAION-Aesthetic-6.5+,teacher model 是 Stable Diffusion-v2.1.

LCM的推理步数在 1 1 1到 4 4 4步的时候效果会比其他 baseline 方法好. 因为DPMDPM++算实践中很常用的 ODE Solver,正常使用时推理步数在 20 20 20以上. 所以综合速度和质量,LCM表现不错.

训练时间 32 A100 GPU Hours

LCM-LoRA

原理:在原本的 Latent Diffusion Model (LDM) 中,可以使用 LoRa 训练一个额外结构附加到模型的 TextEncoder 和 Unet 中,做到模型的风格迁移. 即图中所示的 τ ′ \mathbb{\tau}' τ′,它是原模型微调后额外结构的参数向量. LCM的 backbone 和被它蒸馏模型的 backbone 结构是一致的,所以LCD过程也可以视作对原模型的微调,所以也可以利用 LoRa,在初始化 student Unet 之后,整个蒸馏过程只训练 LoRa 引入的额外结构,也就是获得 τ L C M \mathbb{\tau}_{\mathrm{LCM}} τLCM. 理论上可以结合 τ ′ \mathbb{\tau}' τ′,最终做到既能加速生成,又能风格迁移.

LCD过程仅微调 LoRa,收敛更快,训练消耗显著降低.

相关推荐
云起无垠4 小时前
第79期 | GPTSecurity周报
gpt·aigc
Jeremy_lf5 小时前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型
实验室里哈啤酒5 小时前
ResEmoteNet论文阅读与推理
论文阅读
LuH11246 小时前
【论文阅读笔记】Learning to sample
论文阅读·笔记·图形渲染·点云
程序员X小鹿7 小时前
羡慕了!小红书上3w+点赞的治愈系插图,用这个免费的AI工具,1分钟搞定!(附详细教程)
aigc
开心星人11 小时前
【论文阅读】Unlearning Backdoor Attacks in Federated Learning
论文阅读
AIGC大时代19 小时前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
吕小明么1 天前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi
聆思科技AI芯片2 天前
实操给桌面机器人加上超拟人音色
人工智能·机器人·大模型·aigc·多模态·智能音箱·语音交互
minos.cpp2 天前
Mac上Stable Diffusion的环境搭建(还算比较简单)
macos·ai作画·stable diffusion·aigc