transbigdata 笔记: 轨迹密集化/稀疏化 & 轨迹平滑

1 密集化

python 复制代码
transbigdata.traj_densify(
    data, 
    col=['Vehicleid', 'Time', 'Lng', 'Lat'], 
    timegap=15)

轨迹致密化,保证至多每隔timegap秒都有一个轨迹点

这边插补使用的是pandas的interpolate,method设置的是index

1.1 举例

transbigdata 笔记: 官方文档示例3:车辆轨迹数据处理-CSDN博客

2 稀疏化

python 复制代码
transbigdata.traj_sparsify(
    data, 
    col=['Vehicleid', 'Time', 'Lng', 'Lat'], 
    timegap=15, 
    method='subsample')

扩展采样间隔并减少数据量

  • method可以是interpolate/subsample

1.2 举例

transbigdata 笔记: 官方文档示例3:车辆轨迹数据处理-CSDN博客

3 轨迹平滑

  • 在处理车辆轨迹数据时,轨迹点表示对车辆实际"状态"的"观察"。由于误差,观察到的数据可能与车辆的实际状态有所不同。

  • 那么,如何更准确地估计车辆的实际状态呢?

    • 一种方式是,将轨迹点的位置与先前轨迹点的位置进行比较,以检查显著和不合理的跳跃
    • 换言之,根据车辆先前的轨迹预测车辆未来可能的位置。如果下一个记录的轨迹点明显偏离预期位置,则可以确定轨迹异常。
  • 这种方法与卡尔曼滤波的概念有相似之处

    • 将先前位置推导的状态估计(当前轨迹点的预测位置)与当前观测数据(当前轨迹点的观测位置)相结合,以获得当前状态(实际位置)的最优估计
  • 卡尔曼滤波器适用于轨迹数据中噪声相对稳定的情况,这意味着噪声方差保持不变。它在平滑由轨迹数据中的测量误差引起的小规模波动方面特别有效。

  • 当轨迹中出现显著漂移时,卡尔曼滤波器的有效性是有限的。漂移点被视为观测值,对状态估计有重大影响,卡尔曼滤波器无法直接处理。

  • ------>常见的方法是先去除漂移,然后进行平滑,最后进行路网匹配

3.1 方法介绍

python 复制代码
transbigdata.traj_smooth(
    data, 
    col=['id', 'time', 'lon', 'lat'], 
    proj=False, 
    process_noise_std=0.5, 
    measurement_noise_std=1)

|---------------------------|---------------------------------------|
| data | 轨迹数据 |
| proj | 是否进行等距投影 |
| process_noise_std | 过程噪声的标准偏差【上一时刻的状态预测当前时刻的状态,这个时刻产生的误差】 |
| measurement_noise_std | 测量噪声的标准偏差【观测位置的误差】 |

3.2 举例

transbigdata 笔记: 官方文档示例3:车辆轨迹数据处理-CSDN博客

相关推荐
GoodStudyAndDayDayUp21 分钟前
gitlab+portainer 实现Ruoyi Vue前端CI/CD
前端·vue.js·gitlab
程序员阿明27 分钟前
vite运行只能访问localhost解决办法
前端·vue
前端 贾公子30 分钟前
uniapp -- 验证码倒计时按钮组件
前端·vue.js·uni-app
zhengddzz32 分钟前
从卡顿到丝滑:JavaScript性能优化实战秘籍
开发语言·javascript·性能优化
淡笑沐白35 分钟前
AJAX技术全解析:从基础到最佳实践
前端·ajax
Go_going_37 分钟前
ajax,Promise 和 fetch
javascript·ajax·okhttp
ALINX技术博客43 分钟前
【ALINX 实战笔记】FPGA 大神 Adam Taylor 使用 ChipScope 调试 AMD Versal 设计
笔记·fpga开发
关山煮酒1 小时前
【数据挖掘笔记】兴趣度度量Interest of an association rule
笔记·数据挖掘
龙正哲1 小时前
如何在Firefox火狐浏览器里-安装梦精灵AI提示词管理工具
前端·firefox
徐徐同学1 小时前
轻量级Web画板Paint Board如何本地部署与随时随地在线绘画分享
前端