使用Python对音频进行特征提取(二)

在几年前写的使用Python对音频进行特征提取使用的是人为特征的方法进行特征提取的,近些年随着深度学习的普及,这里尝试使用深度学习方法进行特征提取。

数据集测试

之前的数据集找不到了,这个数据其实是kaggle的一个数据:www.kaggle.com/datasets/ca...

也可以在百度云下载链接: pan.baidu.com/s/177E_2VhN... 提取码: c5nh

音频特征提取

相比传统的方法一堆特征筛选,深度学习这里其实就是一个黑盒。

这里使用了一个音频编码器模型:teticio/audio-encoder

This model encodes audio files into vectors of 100 dimensions. It was trained on a million Spotify playlists and tracks. The details can be found here.

也就是输入一个audio文件名,可以转为100维的特征向量。

css 复制代码
from audiodiffusion.audio_encoder import AudioEncoder

audio_encoder = AudioEncoder.from_pretrained("teticio/audio-encoder")
audio_encoder.encode(["./genres/blues/blues.00043.au"]).numpy()[0].tolist()

可以看到这里把音频直接编码特征了。

然后把所有的数据都转成100维,构成数据集。

py 复制代码
import numpy as np
import os

genres = 'blues classical country disco hiphop jazz metal pop reggae rock'.split()

data_set = []
label_set = []

label2id = {genre:i for i,genre in enumerate(genres)}
id2label = {i:genre for i,genre in enumerate(genres)}

print(label2id)

for g in genres:
    print(g)
    for filename in os.listdir(f'./genres/{g}/'):
        songname = f'./genres/{g}/{filename}'
        print(songname)
        data_set.append(audio_encoder.encode([songname]).numpy()[0].tolist())
        label_set.append(label2id[g])

然后简单的标准化一下。

ini 复制代码
from sklearn.preprocessing import StandardScaler
from keras.utils import to_categorical

scaler = StandardScaler()
X = scaler.fit_transform(np.array(data_set, dtype = float))
y = to_categorical(np.array(label_set))

可以看到这里有1000条数据,10个类别。

ini 复制代码
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

模型训练

这里模型训练和之前一样,先构建一个全连接模型。

css 复制代码
from keras import models
from keras.layers import Dense, Dropout

def create_model():
    model = models.Sequential()
    model.add(Dense(256, activation='relu', input_shape=(X_train.shape[1],)))
    model.add(Dense(128, activation='relu'))
    model.add(Dense(64, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))

    return model

model = create_model()

然后训练。

ini 复制代码
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
ini 复制代码
model.fit(X_train, y_train, epochs=50, batch_size=128)

最后进行测试。

scss 复制代码
test_loss, test_acc = model.evaluate(X_test,y_test)
print('test_acc: ',test_acc)

相比使用人工提取的特征,这次准度比之前的高一些。

相关推荐
weixin_307779133 分钟前
应对不规则负载的异步ML模型服务AWS架构设计
人工智能·深度学习·机器学习·云计算·aws
PieroPc10 分钟前
用python streamlit sqlite3 写一个聊天室
python·streamlit·聊天室
低头不见13 分钟前
策略模式上下文管理
windows·python·策略模式
apcipot_rain14 分钟前
CSP集训错题集 第八周 主题:基础图论
算法·图论
天选之女wow14 分钟前
【代码随想录算法训练营——Day57(Day56周日休息)】图论——53.寻宝
算法·图论
Xander W14 分钟前
基于K8s集群的PyTorch DDP 框架分布式训练测试(开发机版)
人工智能·pytorch·分布式·python·深度学习·kubernetes
Wah-Aug19 分钟前
基于 PyTorch 的 UNet 与 NestedUNet 图像分割
人工智能·pytorch·计算机视觉
云和数据.ChenGuang19 分钟前
感知机之争,杀死神经网络的“人工智能之父”
人工智能·深度学习·神经网络
rengang6621 分钟前
10-神经网络的工作原理:分析神经网络如何学习和推理
人工智能·深度学习·神经网络·学习
无风听海23 分钟前
神经网络之向量降维
人工智能·神经网络·机器学习