Yolov8_使用自定义数据集训练模型1

前面几篇文章介绍了如何搭建Yolov8环境、使用默认的模型训练和推理图片及视频的效果、并使用GPU版本的torch加速推理、导出.engine格式的模型进一步利用GPU加速,本篇介绍如何自定义数据集,这样就可以训练出识别特定物体的模型。

《Yolov8_使用自定义数据集训练模型1》------主要是怎么创建自定义数据集,测试demo;

《Yolov8_使用自定义数据集训练模型2》------搜集更多的图片去标注、训练,重点关注训练后的实际效果;

1、创建自定义数据集

1.1、创建自定义数据集------总体流程

  • 收集图片:收集一批带有目标物体的图片【images文件夹下.png图片】
  • 标注目标物体:使用标注工具对图片中的目标物体进行标注【xml_labels文件夹下.xml文件】
  • 划分数据集:将整个数据集按一定比例分为训练集、验证集、测试集【使用split_dataset.py脚本生成split_dataset_txt文件夹中的.txt文件,.txt文件内容是不含后缀.xml的文件名】
  • 生成Yolo标注文件及各数据集使用的图片路径:使用xml_to_txt.py脚本将xml标注文件转成Yolo需要的.txt标注文件【labels文件夹下.txt标注文件】,同时脚本生成训练集、验证集、测试集所使用图片的绝对路径【当前目录下test.txt、train.txt、val.txt】

最终的效果就是下面这个文件夹:

farmland.yaml是进行yolo训练时配置文件,不属于创建数据集,后面再说明;

图片是截图来的命名比较乱,batch_rename.py用于批量重命名,下面会附代码;

1.2、收集图片

收集一批带有目标物体的图片,图片的多少和质量关乎训练出模型的效果,这里只找了几张图片是为了跑一下自定义数据集的流程。

图片是截图来的,自动保存的文件名与内容无关,相信你也不想一个一个rename,下面是对图片批量重命名的batch_rename.py代码:

python 复制代码
import os

class BatchRename():
    def __init__(self):
        self.path = './images'  
        
    def rename(self):
        filelist = os.listdir(self.path)    
        total_num = len(filelist)          
        i = 1 
        for item in filelist:
            if 1:  
                src = os.path.join(os.path.abspath(self.path), item)  
                dst = os.path.join(os.path.abspath(self.path), 'farmland' + format(str(i), '0>4s') + '.png')    
                try:
                    os.rename(src, dst)   
                    print('converting %s to %s ...' % (src, dst))
                    i = i + 1
                except:
                    continue
        print ('total rename %d files.' % (total_num))
 
if __name__ == '__main__':
    demo = BatchRename()
    demo.rename()

1.3、标注目标物体

1.3.1、标注工具_没有使用labelimg

大部分人使用的标注工具是labelimg,但是安装labelimg需要安装pyqt5等依赖,pyqt5等不支持python3.10,不至于为了这个标注工具去修改现在Linux的Python环境。虽然labelimg也支持Windows,但是看教程又需要Anaconda环境,没必要这么麻烦,所以不想使用labelimg。

1.3.2、标注工具_使用Colabeler

发现Colabeler的界面还算好看,支持计算机视觉、NLP、语音三大领域的标注,功能强大且免费,所以试试看。

Colabeler官网:Colabeler - Best annotation tool for AI dataset labeling

Windows安装Colabeler,标注后的.xml文件传给Linux

标注的目的是得到.xml文件,所以完全可以在Windows安装该软件并标注,然后使用SSH传给Linux,使用该方式是因为图片本身也要传给Linux,这样等于是把搜集图片和标注这两步合一起在自己的Windows上先做好。

Windows安装Colabeler没必要说了,直接下一步下一步就能安装成功,然后打开界面左上角创建项目,然后选择Localization、填入项目名称、图片路径、分类名称(多个分类用逗号隔开,这里只写了一个farmland,就是想根据图片判断是否是农田)。

使用"Rectangle"工具标注出目标物体,右侧LabelList选择目标所属类别,一张图片所有的目标物体标注完成后单击下方对号确认,使用"Next"进入下一张图片标注,所有图片标注完成单击"Export"导出XML文件。

1.4、划分数据集

目的是将整个数据集按一定比例分为训练集、验证集、测试集。

使用split_dataset.py脚本随机划分数据集,生成split_dataset_txt文件夹中的.txt文件,.txt文件内容是不含后缀.xml的文件名,下面是split_dataset.py以及各文件内容:

python 复制代码
import os
import random
 
 
trainval_percent = 0.9
train_percent = 0.9
xmlfilepath = './xml_labels'
txtsavepath = './split_dataset_txt'
total_xml = os.listdir(xmlfilepath)
 
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
 
ftrainval = open('./split_dataset_txt/trainval.txt', 'w')
ftest = open('./split_dataset_txt/test.txt', 'w')
ftrain = open('./split_dataset_txt/train.txt', 'w')
fval = open('./split_dataset_txt/val.txt', 'w')
 
for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)
 
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

1.5、生成Yolo标注文件及各数据集使用的图片路径

使用xml_to_txt.py脚本将xml标注文件转成Yolo需要的.txt标注文件【labels文件夹下.txt标注文件】,同时脚本生成训练集、验证集、测试集所使用图片的绝对路径【当前目录下test.txt、train.txt、val.txt】,下面是xml_to_txt.py以及各文件内容:

如果使用的标注工具不同,解析xml过程可能会报错,此时任意可以打开一个.xml文件根据实际结构修改。

python 复制代码
 
import xml.etree.ElementTree as ET
import os
from os import getcwd
 
sets = ['train', 'val', 'test']
classes = ['farmland']
abs_path = os.getcwd()
print(abs_path)
 
def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h
 
def convert_annotation(image_id):
    in_file = open('./xml_labels/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('./labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    
    objects = root.find('outputs').find('object')
      
    for obj in objects.iter('item'):      
        cls = obj.find('name').text
        if cls not in classes :
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
       
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
 
wd = getcwd()
for image_set in sets:
    if not os.path.exists('./labels/'):
        os.makedirs('./labels/')
    image_ids = open('./split_dataset_txt/%s.txt' % (image_set)).read().strip().split()
    list_file = open('./%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/images/%s.png\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

2、使用数据集进行yolo训练

2.1、编写.yaml配置文件

给出训练集、验证集、测试集的路径,训练的目标总数,具体的序号和目标名称列表。

cpp 复制代码
train: /home/lgzn/datasets/farmland_dataset/train.txt
val: /home/lgzn/datasets/farmland_dataset/val.txt
test: /home/lgzn/datasets/farmland_dataset/test.txt

nc: 1
names:
  0: farmland

2.2、使用自定义数据集训练

修改.yaml配置文件的路径,测试能否使用刚才制作的这个数据集进行训练。

cpp 复制代码
yolo train data='/home/lgzn/datasets/farmland_dataset/farmland.yaml' model=yolov8n.pt epochs=2 lr0=0.01

如果和之前文章中使用coco128数据集的训练输出日志流程差不多,没有报错,这一步就完成了。

相关推荐
新智元几秒前
Meta没做的,英伟达做了!全新架构吞吐量狂飙6倍,20万亿Token训练
人工智能·openai
新智元几秒前
Hinton 预言成真!AI 接管美国一半白领,牛津哈佛扎堆转行做技工
人工智能·openai
aneasystone本尊12 分钟前
学习 Coze Studio 的知识库入库逻辑
人工智能
然我13 分钟前
从 “只会聊天” 到 “能办实事”:OpenAI Function Call 彻底重构 AI 交互逻辑(附完整接入指南)
前端·javascript·人工智能
岁月宁静20 分钟前
软件开发核心流程全景解析 —— 基于 AI 多模态项目实践
前端·人工智能·后端
wangjiaocheng21 分钟前
软件功能分解输入处理输出递归嵌套模型
人工智能
G等你下课22 分钟前
Function call
前端·人工智能
岁月宁静22 分钟前
MCP 协议应用场景 —— Cursor 连接 Master Go AI
前端·vue.js·人工智能
柠檬味拥抱25 分钟前
融合NLU与NLG的AI Agent语言交互机制研究
人工智能
wydaicls28 分钟前
用函数实现方程函数解题
人工智能·算法·机器学习