在 Linux 本地部署 stable diffusion

由于工作站安装的是 ubuntu,卡也在上面,就只能在 ubuntu 上部署安装 stable diffusion 了。另外,Linux 上使用 stable diffusion 也会方便很多。

1 准备工作

  • NVIDIA 官网下载驱动,主要是为了规避多卡驱动不同的问题。由于本机是两张一样的卡,就可以省去这一步。如果存在不同型号的多卡驱动不兼容的问题,就需要去官网下载。
  • 安装 python 3.10
  • 安装 CUDA11.8(pytorch2.x,xformers),对 stable diffusion 兼容比较好
    • 支持 pytorch2.x
    • 支持 xformers,可以加速图片生成

2 deploy stable diffusion

  • github stable diffusion webUI

    bash 复制代码
        git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
  • 配置 venv python 虚拟环境,因为不同模型的 python 版本要求不同

    bash 复制代码
        # 创建虚拟环境
        python3 -m venv venv
    
        # 进入虚拟环境
        source venv/bin/activate
        # 退出虚拟环境
        deactivate

    也可以使用 conda 来进行虚拟环境的创建和管理。

  • Stable diffusion WebUI 启动,自动安装依赖

    bash 复制代码
        # 启动,会自动下载依赖
        ./webui.sh --xformers

3 报错解决

'''

这里可能会出现一些报错

  1. Cannot locate TCMalloc(improves CPU memory usage),这个报错是因为缺少 libgoogle-perftools4 和 libtcmalloc-minimal4,直接安装即可

    sudo apt install libgoogle-perftools4 libtcmalloc-minimal4 -y

  2. This scripts must not be launched as root, aborting...

解决方法:

bash webui.sh -f

'''

  1. OSError: Can't load tokenizer for 'openai/clip-vit-large-patch14'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure 'openai/clip-vit-large-patch14' is the correct path to a directory containing all relevant files for a CLIPTokenizer tokenizer.

解决方法:

运行时它需要访问huggingface.co去下载一些模型需要的文件,而大陆用户连接不上huggingface.co,导致部署失败。

下载文件并进行配置, 让 stable diffusion 访问本地数据, 放置到你所需要的目录, 开始进行配置,这些文件(clip)是模型中encoder所需要的,我们可以从报错信息中去发现是哪里调用了这个openai/clip-vit-large-patch14,去修改这个路径配置即可。

这里的配置会导致我们运行时会去huggingface.co(外网)找这个文件,只需要将这个改成我们之前下载所放置的路径即可, 一共四处

  1. RuntimeError: GET was unable to find an engine to execute this computation

解决方法:

因为torch torchvision cuda以及python版本都是有兼容关系的, 这三者安装兼容版本就可以了.

检测torch和cuda是否能用:

python 复制代码
import torch
print(torch.__version__)
print(torch.cuda.is_available())

测试:

python 复制代码
import torch

print(torch.cuda.is_available())
num_gpu =1 
# Decide which device to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and num_gpu > 0) else "cpu")
print(device)
print(torch.cuda.get_device_name(0))
print(torch.rand(3,3).cuda())

检查cudnn是否可用:

python 复制代码
print(torch.backends.cudnn.version())
相关推荐
乌萨奇也要立志学C++3 分钟前
【Linux】进程概念(六):进程地址空间深度解析:虚拟地址与内存管理的奥秘
linux·运维
月殇_木言4 小时前
Linux 线程
linux
wangjialelele4 小时前
Linux中的线程
java·linux·jvm·c++
mCell5 小时前
长期以来我对 LLM 的误解
深度学习·llm·ollama
Ada's6 小时前
深度学习在自动驾驶上应用(二)
人工智能·深度学习·自动驾驶
2301_800050996 小时前
DNS 服务器
linux·运维·笔记
Lin_Aries_04216 小时前
容器化简单的 Java 应用程序
java·linux·运维·开发语言·docker·容器·rpc
SELSL6 小时前
SQLite3的API调用实战例子
linux·数据库·c++·sqlite3·sqlite实战
小牛马爱写博客7 小时前
DNS 服务器与 DHCP 服务器详解及配置指南
linux·运维·服务器·dns·dhcp
维尔切7 小时前
HAProxy 负载均衡器
linux·运维·数据库·负载均衡