在 Linux 本地部署 stable diffusion

由于工作站安装的是 ubuntu,卡也在上面,就只能在 ubuntu 上部署安装 stable diffusion 了。另外,Linux 上使用 stable diffusion 也会方便很多。

1 准备工作

  • NVIDIA 官网下载驱动,主要是为了规避多卡驱动不同的问题。由于本机是两张一样的卡,就可以省去这一步。如果存在不同型号的多卡驱动不兼容的问题,就需要去官网下载。
  • 安装 python 3.10
  • 安装 CUDA11.8(pytorch2.x,xformers),对 stable diffusion 兼容比较好
    • 支持 pytorch2.x
    • 支持 xformers,可以加速图片生成

2 deploy stable diffusion

  • github stable diffusion webUI

    bash 复制代码
        git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
  • 配置 venv python 虚拟环境,因为不同模型的 python 版本要求不同

    bash 复制代码
        # 创建虚拟环境
        python3 -m venv venv
    
        # 进入虚拟环境
        source venv/bin/activate
        # 退出虚拟环境
        deactivate

    也可以使用 conda 来进行虚拟环境的创建和管理。

  • Stable diffusion WebUI 启动,自动安装依赖

    bash 复制代码
        # 启动,会自动下载依赖
        ./webui.sh --xformers

3 报错解决

'''

这里可能会出现一些报错

  1. Cannot locate TCMalloc(improves CPU memory usage),这个报错是因为缺少 libgoogle-perftools4 和 libtcmalloc-minimal4,直接安装即可

    sudo apt install libgoogle-perftools4 libtcmalloc-minimal4 -y

  2. This scripts must not be launched as root, aborting...

解决方法:

bash webui.sh -f

'''

  1. OSError: Can't load tokenizer for 'openai/clip-vit-large-patch14'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure 'openai/clip-vit-large-patch14' is the correct path to a directory containing all relevant files for a CLIPTokenizer tokenizer.

解决方法:

运行时它需要访问huggingface.co去下载一些模型需要的文件,而大陆用户连接不上huggingface.co,导致部署失败。

下载文件并进行配置, 让 stable diffusion 访问本地数据, 放置到你所需要的目录, 开始进行配置,这些文件(clip)是模型中encoder所需要的,我们可以从报错信息中去发现是哪里调用了这个openai/clip-vit-large-patch14,去修改这个路径配置即可。

这里的配置会导致我们运行时会去huggingface.co(外网)找这个文件,只需要将这个改成我们之前下载所放置的路径即可, 一共四处

  1. RuntimeError: GET was unable to find an engine to execute this computation

解决方法:

因为torch torchvision cuda以及python版本都是有兼容关系的, 这三者安装兼容版本就可以了.

检测torch和cuda是否能用:

python 复制代码
import torch
print(torch.__version__)
print(torch.cuda.is_available())

测试:

python 复制代码
import torch

print(torch.cuda.is_available())
num_gpu =1 
# Decide which device to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and num_gpu > 0) else "cpu")
print(device)
print(torch.cuda.get_device_name(0))
print(torch.rand(3,3).cuda())

检查cudnn是否可用:

python 复制代码
print(torch.backends.cudnn.version())
相关推荐
东方佑36 分钟前
自动调整PPT文本框内容:防止溢出并智能截断文本
linux·运维·powerpoint
zhougl9961 小时前
html处理Base文件流
linux·前端·html
泥土编程3 小时前
kubekey -实现懒人一键部署K8S集群
linux·运维
Uzuki3 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
wirepuller_king6 小时前
创建Linux虚拟环境并远程连接,finalshell自定义壁纸
linux·运维·服务器
在野靡生.6 小时前
Ansible(1)—— Ansible 概述
linux·运维·ansible
风123456789~6 小时前
【Linux运维】查询指定日期的上月
linux·运维·服务器
我没想到原来他们都是一堆坏人7 小时前
利用vmware快速安装一个可以使用的centos7系统
linux·虚拟机
x-cmd7 小时前
[250331] Paozhu 发布 1.9.0:C++ Web 框架,比肩脚本语言 | DeaDBeeF 播放器发布 1.10.0
android·linux·开发语言·c++·web·音乐播放器·脚本语言
weitinting7 小时前
Ali linux 通过yum安装redis
linux·redis