机器学习Python7天入门计划--第一天-机器学习基础-讲人话

机器学习Python7天入门计划 - 第一天: 机器学习基础
学习目标:

理解机器学习的基本概念和过程。

掌握基本的数据预处理技巧。

理解线性回归的原理和应用。
学习内容:
机器学习基础

什么是机器学习:机器学习是一种使计算机能够从数据中学习规律和模式的技术。

为什么要学习机器学习:机器学习能够帮助解决复杂问题,如语音识别、图像识别、预测分析等。

需要解决的问题:如分类、回归、聚类等。

机器学习种类:监督学习、无监督学习、强化学习等。

机器学习的一般过程

数据收集 -> 数据预处理 -> 模型训练 -> 模型评估 -> 部署应用。

机器学习的典型应用

数据样本矩阵:处理和分析数据。

数据样本移除:清洗不需要的数据。

范围缩放:标准化数据。

二值化:将数据转换为0和1。

数据预处理

归一化:将数据缩放到固定范围内。

独热编码:将分类变量转换为机器学习模型更易理解的形式。

标签编码:将类别标签转换为数值。

线性回归

理解线性回归的概念。

示例:根据工作经验预测薪资水平。

代码示例:线性回归

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

示例数据:工作经验与薪资

experience = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) # 工作经验年数

salary = np.array([30000, 35000, 50000, 40000, 65000]) # 对应薪资

创建线性回归模型

model = LinearRegression()

model.fit(experience, salary)

进行预测

experience_new = np.array([6]).reshape(-1, 1)

predicted_salary = model.predict(experience_new)

print(f"预测的薪资: {predicted_salary[0]}")

可视化

plt.scatter(experience, salary, color='blue') # 原始数据点

plt.plot(experience, model.predict(experience), color='red') # 回归线

plt.xlabel('工作经验 (年)')

plt.ylabel('薪资')

plt.show()

在第一天的学习中,我们将了解机器学习的基础概念,掌握数据预处理的基本技巧,并通过一个简单的线性回归示例来预测工作经验和薪资之间的关系。这些知识将为接下来的学习奠定坚实的基础。

相关推荐
Power20246663 分钟前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k7 分钟前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫12 分钟前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班26 分钟前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k27 分钟前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr36 分钟前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20241 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
多吃轻食1 小时前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
北京搜维尔科技有限公司2 小时前
搜维尔科技:【应用】Xsens在荷兰车辆管理局人体工程学评估中的应用
人工智能·安全
说私域2 小时前
基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究
人工智能·小程序·零售