机器学习Python7天入门计划--第一天-机器学习基础-讲人话

机器学习Python7天入门计划 - 第一天: 机器学习基础
学习目标:

理解机器学习的基本概念和过程。

掌握基本的数据预处理技巧。

理解线性回归的原理和应用。
学习内容:
机器学习基础

什么是机器学习:机器学习是一种使计算机能够从数据中学习规律和模式的技术。

为什么要学习机器学习:机器学习能够帮助解决复杂问题,如语音识别、图像识别、预测分析等。

需要解决的问题:如分类、回归、聚类等。

机器学习种类:监督学习、无监督学习、强化学习等。

机器学习的一般过程

数据收集 -> 数据预处理 -> 模型训练 -> 模型评估 -> 部署应用。

机器学习的典型应用

数据样本矩阵:处理和分析数据。

数据样本移除:清洗不需要的数据。

范围缩放:标准化数据。

二值化:将数据转换为0和1。

数据预处理

归一化:将数据缩放到固定范围内。

独热编码:将分类变量转换为机器学习模型更易理解的形式。

标签编码:将类别标签转换为数值。

线性回归

理解线性回归的概念。

示例:根据工作经验预测薪资水平。

代码示例:线性回归

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

示例数据:工作经验与薪资

experience = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) # 工作经验年数

salary = np.array([30000, 35000, 50000, 40000, 65000]) # 对应薪资

创建线性回归模型

model = LinearRegression()

model.fit(experience, salary)

进行预测

experience_new = np.array([6]).reshape(-1, 1)

predicted_salary = model.predict(experience_new)

print(f"预测的薪资: {predicted_salary[0]}")

可视化

plt.scatter(experience, salary, color='blue') # 原始数据点

plt.plot(experience, model.predict(experience), color='red') # 回归线

plt.xlabel('工作经验 (年)')

plt.ylabel('薪资')

plt.show()

在第一天的学习中,我们将了解机器学习的基础概念,掌握数据预处理的基本技巧,并通过一个简单的线性回归示例来预测工作经验和薪资之间的关系。这些知识将为接下来的学习奠定坚实的基础。

相关推荐
珠海西格电力科技36 分钟前
微电网控制策略基础:集中式、分布式与混合式控制逻辑
网络·人工智能·分布式·物联网·智慧城市·能源
Java后端的Ai之路1 小时前
【RAG技术】- RAG系统调优手段之高效召回(通俗易懂附案例)
人工智能·rag·rag系统·召回·rag调优
草莓熊Lotso1 小时前
Linux 基础 IO 初步解析:从 C 库函数到系统调用,理解文件操作本质
linux·运维·服务器·c语言·数据库·c++·人工智能
Cx330❀2 小时前
从零实现Shell命令行解释器:原理与实战(附源码)
大数据·linux·数据库·人工智能·科技·elasticsearch·搜索引擎
Niuguangshuo8 小时前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火8 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887828 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a8 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily9 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron15889 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理