机器学习Python7天入门计划--第一天-机器学习基础-讲人话

机器学习Python7天入门计划 - 第一天: 机器学习基础
学习目标:

理解机器学习的基本概念和过程。

掌握基本的数据预处理技巧。

理解线性回归的原理和应用。
学习内容:
机器学习基础

什么是机器学习:机器学习是一种使计算机能够从数据中学习规律和模式的技术。

为什么要学习机器学习:机器学习能够帮助解决复杂问题,如语音识别、图像识别、预测分析等。

需要解决的问题:如分类、回归、聚类等。

机器学习种类:监督学习、无监督学习、强化学习等。

机器学习的一般过程

数据收集 -> 数据预处理 -> 模型训练 -> 模型评估 -> 部署应用。

机器学习的典型应用

数据样本矩阵:处理和分析数据。

数据样本移除:清洗不需要的数据。

范围缩放:标准化数据。

二值化:将数据转换为0和1。

数据预处理

归一化:将数据缩放到固定范围内。

独热编码:将分类变量转换为机器学习模型更易理解的形式。

标签编码:将类别标签转换为数值。

线性回归

理解线性回归的概念。

示例:根据工作经验预测薪资水平。

代码示例:线性回归

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

示例数据:工作经验与薪资

experience = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) # 工作经验年数

salary = np.array([30000, 35000, 50000, 40000, 65000]) # 对应薪资

创建线性回归模型

model = LinearRegression()

model.fit(experience, salary)

进行预测

experience_new = np.array([6]).reshape(-1, 1)

predicted_salary = model.predict(experience_new)

print(f"预测的薪资: {predicted_salary[0]}")

可视化

plt.scatter(experience, salary, color='blue') # 原始数据点

plt.plot(experience, model.predict(experience), color='red') # 回归线

plt.xlabel('工作经验 (年)')

plt.ylabel('薪资')

plt.show()

在第一天的学习中,我们将了解机器学习的基础概念,掌握数据预处理的基本技巧,并通过一个简单的线性回归示例来预测工作经验和薪资之间的关系。这些知识将为接下来的学习奠定坚实的基础。

相关推荐
麻雀无能为力43 分钟前
CAU数据挖掘 支持向量机
人工智能·支持向量机·数据挖掘·中国农业大学计算机
智能汽车人1 小时前
Robot---能打羽毛球的机器人
人工智能·机器人·强化学习
埃菲尔铁塔_CV算法1 小时前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉
ζั͡山 ั͡有扶苏 ั͡✾1 小时前
AI辅助编程工具对比分析:Cursor、Copilot及其他主流选择
人工智能·copilot·cursor
东临碣石821 小时前
【AI论文】数学推理能否提升大型语言模型(LLM)的通用能力?——探究大型语言模型推理能力的可迁移性
人工智能·语言模型·自然语言处理
IT古董1 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(3)决策树回归模型(Decision Tree Regression)
神经网络·机器学习·回归
未来智慧谷2 小时前
微软医疗AI诊断系统发布 多智能体协作实现疑难病例分析
人工智能·microsoft·医疗ai
野生技术架构师2 小时前
简述MCP的原理-AI时代的USB接口
人工智能·microsoft
Allen_LVyingbo2 小时前
Python常用医疗AI库以及案例解析(2025年版、上)
开发语言·人工智能·python·学习·健康医疗
jndingxin2 小时前
OpenCV中超分辨率(Super Resolution)模块类cv::dnn_superres::DnnSuperResImpl
人工智能·opencv·dnn