机器学习Python7天入门计划--第一天-机器学习基础-讲人话

机器学习Python7天入门计划 - 第一天: 机器学习基础
学习目标:

理解机器学习的基本概念和过程。

掌握基本的数据预处理技巧。

理解线性回归的原理和应用。
学习内容:
机器学习基础

什么是机器学习:机器学习是一种使计算机能够从数据中学习规律和模式的技术。

为什么要学习机器学习:机器学习能够帮助解决复杂问题,如语音识别、图像识别、预测分析等。

需要解决的问题:如分类、回归、聚类等。

机器学习种类:监督学习、无监督学习、强化学习等。

机器学习的一般过程

数据收集 -> 数据预处理 -> 模型训练 -> 模型评估 -> 部署应用。

机器学习的典型应用

数据样本矩阵:处理和分析数据。

数据样本移除:清洗不需要的数据。

范围缩放:标准化数据。

二值化:将数据转换为0和1。

数据预处理

归一化:将数据缩放到固定范围内。

独热编码:将分类变量转换为机器学习模型更易理解的形式。

标签编码:将类别标签转换为数值。

线性回归

理解线性回归的概念。

示例:根据工作经验预测薪资水平。

代码示例:线性回归

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

示例数据:工作经验与薪资

experience = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) # 工作经验年数

salary = np.array([30000, 35000, 50000, 40000, 65000]) # 对应薪资

创建线性回归模型

model = LinearRegression()

model.fit(experience, salary)

进行预测

experience_new = np.array([6]).reshape(-1, 1)

predicted_salary = model.predict(experience_new)

print(f"预测的薪资: {predicted_salary[0]}")

可视化

plt.scatter(experience, salary, color='blue') # 原始数据点

plt.plot(experience, model.predict(experience), color='red') # 回归线

plt.xlabel('工作经验 (年)')

plt.ylabel('薪资')

plt.show()

在第一天的学习中,我们将了解机器学习的基础概念,掌握数据预处理的基本技巧,并通过一个简单的线性回归示例来预测工作经验和薪资之间的关系。这些知识将为接下来的学习奠定坚实的基础。

相关推荐
33三 三like2 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a2 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者3 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗3 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_4 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信4 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235864 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs4 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
董董灿是个攻城狮4 小时前
AI 视觉连载2:灰度图
人工智能