机器学习Python7天入门计划--第一天-机器学习基础-讲人话

机器学习Python7天入门计划 - 第一天: 机器学习基础
学习目标:

理解机器学习的基本概念和过程。

掌握基本的数据预处理技巧。

理解线性回归的原理和应用。
学习内容:
机器学习基础

什么是机器学习:机器学习是一种使计算机能够从数据中学习规律和模式的技术。

为什么要学习机器学习:机器学习能够帮助解决复杂问题,如语音识别、图像识别、预测分析等。

需要解决的问题:如分类、回归、聚类等。

机器学习种类:监督学习、无监督学习、强化学习等。

机器学习的一般过程

数据收集 -> 数据预处理 -> 模型训练 -> 模型评估 -> 部署应用。

机器学习的典型应用

数据样本矩阵:处理和分析数据。

数据样本移除:清洗不需要的数据。

范围缩放:标准化数据。

二值化:将数据转换为0和1。

数据预处理

归一化:将数据缩放到固定范围内。

独热编码:将分类变量转换为机器学习模型更易理解的形式。

标签编码:将类别标签转换为数值。

线性回归

理解线性回归的概念。

示例:根据工作经验预测薪资水平。

代码示例:线性回归

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

示例数据:工作经验与薪资

experience = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) # 工作经验年数

salary = np.array([30000, 35000, 50000, 40000, 65000]) # 对应薪资

创建线性回归模型

model = LinearRegression()

model.fit(experience, salary)

进行预测

experience_new = np.array([6]).reshape(-1, 1)

predicted_salary = model.predict(experience_new)

print(f"预测的薪资: {predicted_salary[0]}")

可视化

plt.scatter(experience, salary, color='blue') # 原始数据点

plt.plot(experience, model.predict(experience), color='red') # 回归线

plt.xlabel('工作经验 (年)')

plt.ylabel('薪资')

plt.show()

在第一天的学习中,我们将了解机器学习的基础概念,掌握数据预处理的基本技巧,并通过一个简单的线性回归示例来预测工作经验和薪资之间的关系。这些知识将为接下来的学习奠定坚实的基础。

相关推荐
小圣贤君20 小时前
在 Electron 应用中优雅接入 DeepSeek AI:从零到一的完整实践指南
人工智能·electron·vue3·ai写作·deepseek
小程故事多_8020 小时前
AI Agent架构革命,Skills模式为何能颠覆传统Workflow?
人工智能·架构·aigc
翱翔的苍鹰20 小时前
多Agent智能体系统设计思路
java·python·深度学习·神经网络·机器学习·tensorflow
sali-tec20 小时前
C# 基于OpenCv的视觉工作流-章15-多边形逼近
图像处理·人工智能·opencv·算法·计算机视觉
TonyLee01720 小时前
LLM与传统机器学习
人工智能·机器学习
z_lices20 小时前
倪仁勇:K线语言破译者,技术分析体系的建构者与传播者
大数据·人工智能
救救孩子把20 小时前
57-机器学习与大模型开发数学教程-5-4 共轭梯度法
人工智能·机器学习
半问20 小时前
AI知识库,是捷径吗?
人工智能·ai·互联网·产品经理
瑶光守护者20 小时前
【Rockchip RK3576】边缘计算与 AIoT 领域的全能架构深度解析
人工智能·架构·边缘计算
信创天地20 小时前
信创运维核心技术:国产化软硬件适配与故障排查全解析
运维·人工智能·开源·dubbo·运维开发·risc-v