【机器学习】TensorFlowLite安装和模型训练

运行环境

Linux,部分库不支持Apple芯片

做AI这部分的开发,还是强烈建议装个Linux双系统或虚拟机

这些比折腾Windows和Mac上的移植环境要轻松得多

安装依赖
tex 复制代码
sudo apt install libportaudio2=19.6.0-1.2
pip3 install tf-models-official==2.3.0
pip3 install tensorflow-hub==0.12
pip3 install numpy==1.23.5
pip3 install pillow==10.1.0
pip3 install sentencepiece==0.1.99
pip3 install tensorflow-datasets==2.1.0
pip3 install fire==0.3.1
pip3 install flatbuffers==23.5.26
pip3 install absl-py==1.4.0
pip3 install urllib3==2.1.0
pip3 install tflite-support==0.4.2
pip3 install tensorflowjs==3.18.0
pip3 install tensorflow==2.15.0
pip3 install numba==0.58.1
pip3 install librosa==0.8.1
pip3 install lxml==4.6.1
pip3 install PyYAML==6.0.1
pip3 install matplotlib==3.4.0
pip3 install six==1.16.0
pip3 install tensorflow-addons==0.23.0
pip3 install neural-structured-learning==1.3.1
pip3 install tensorflow-model-optimization==0.7.5
pip3 install Cython==0.29.13
pip3 install protobuf==3.20.3
pip3 install tensorflow==2.8.4
pip3 install scann==1.2.6
pip3 install tflite-model-maker==0.4.2
准备训练图片
txt 复制代码
图片存放格式如下
--ModelFolder
----ClassFolder01
------Image01
------Image02
------Image03
----ClassFolder02
------Image01
------Image02
------Image03
----ClassFolder03
------Image01
------Image02
------Image03
TensorFlowLite对训练图片的格式要求非常严格,不仅仅是后缀名正确可以
测试图片和参考文档

https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz

https://www.tensorflow.org/lite/models/modify/model_maker/image_classification

https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/zh-cn/lite/models/modify/model_maker/image_classification.ipynb

模型训练与导出
python 复制代码
	import os
	import numpy
	import tensorflow as tf
	import matplotlib.pyplot as plot
	from tflite_model_maker import model_spec as ModelSpec
	from tflite_model_maker import image_classifier as ImageClassifier
	from tflite_model_maker.config import ExportFormat
	from tflite_model_maker.config import QuantizationConfig
	from tflite_model_maker.image_classifier import DataLoader
	from keras.layers import normalization
	
	print("Model Train Started")
	data = DataLoader.from_folder("/home/dev/flower_photos")
	trainData, testData = data.split(0.9)
	model = ImageClassifier.create(trainData)
	loss, accuracy = model.evaluate(testData)
	model.export("/home/dev/flower_photos")
	print("Model Exported")
相关推荐
mengyoufengyu4 分钟前
DeepSeek12-Open WebUI 知识库配置详细步骤
人工智能·大模型·deepseek
carpell43 分钟前
【语义分割专栏】3:Segnet实战篇(附上完整可运行的代码pytorch)
人工智能·python·深度学习·计算机视觉·语义分割
智能汽车人1 小时前
自动驾驶---SD图导航的规划策略
人工智能·机器学习·自动驾驶
mengyoufengyu1 小时前
DeepSeek11-Ollama + Open WebUI 搭建本地 RAG 知识库全流程指南
人工智能·深度学习·deepseek
Tianyanxiao1 小时前
华为×小鹏战略合作:破局智能驾驶深水区的商业逻辑深度解析
大数据·人工智能·经验分享·华为·金融·数据分析
rit84324992 小时前
基于BP神经网络的语音特征信号分类
人工智能·神经网络·分类
一点.点2 小时前
AlphaDrive:通过强化学习和推理释放自动驾驶中 VLM 的力量
人工智能·机器学习·自动驾驶
科技小E2 小时前
口罩佩戴检测算法AI智能分析网关V4工厂/工业等多场景守护公共卫生安全
网络·人工智能
说私域2 小时前
基于定制开发开源AI智能名片S2B2C商城小程序的首屏组件优化策略研究
人工智能·小程序·开源·零售
vlln2 小时前
2025年与2030年AI及AI智能体 (Agent) 市场份额分析报告
人工智能·深度学习·神经网络·ai