【机器学习】TensorFlowLite安装和模型训练

运行环境

Linux,部分库不支持Apple芯片

做AI这部分的开发,还是强烈建议装个Linux双系统或虚拟机

这些比折腾Windows和Mac上的移植环境要轻松得多

安装依赖
tex 复制代码
sudo apt install libportaudio2=19.6.0-1.2
pip3 install tf-models-official==2.3.0
pip3 install tensorflow-hub==0.12
pip3 install numpy==1.23.5
pip3 install pillow==10.1.0
pip3 install sentencepiece==0.1.99
pip3 install tensorflow-datasets==2.1.0
pip3 install fire==0.3.1
pip3 install flatbuffers==23.5.26
pip3 install absl-py==1.4.0
pip3 install urllib3==2.1.0
pip3 install tflite-support==0.4.2
pip3 install tensorflowjs==3.18.0
pip3 install tensorflow==2.15.0
pip3 install numba==0.58.1
pip3 install librosa==0.8.1
pip3 install lxml==4.6.1
pip3 install PyYAML==6.0.1
pip3 install matplotlib==3.4.0
pip3 install six==1.16.0
pip3 install tensorflow-addons==0.23.0
pip3 install neural-structured-learning==1.3.1
pip3 install tensorflow-model-optimization==0.7.5
pip3 install Cython==0.29.13
pip3 install protobuf==3.20.3
pip3 install tensorflow==2.8.4
pip3 install scann==1.2.6
pip3 install tflite-model-maker==0.4.2
准备训练图片
txt 复制代码
图片存放格式如下
--ModelFolder
----ClassFolder01
------Image01
------Image02
------Image03
----ClassFolder02
------Image01
------Image02
------Image03
----ClassFolder03
------Image01
------Image02
------Image03
TensorFlowLite对训练图片的格式要求非常严格,不仅仅是后缀名正确可以
测试图片和参考文档

https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz

https://www.tensorflow.org/lite/models/modify/model_maker/image_classification

https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/zh-cn/lite/models/modify/model_maker/image_classification.ipynb

模型训练与导出
python 复制代码
	import os
	import numpy
	import tensorflow as tf
	import matplotlib.pyplot as plot
	from tflite_model_maker import model_spec as ModelSpec
	from tflite_model_maker import image_classifier as ImageClassifier
	from tflite_model_maker.config import ExportFormat
	from tflite_model_maker.config import QuantizationConfig
	from tflite_model_maker.image_classifier import DataLoader
	from keras.layers import normalization
	
	print("Model Train Started")
	data = DataLoader.from_folder("/home/dev/flower_photos")
	trainData, testData = data.split(0.9)
	model = ImageClassifier.create(trainData)
	loss, accuracy = model.evaluate(testData)
	model.export("/home/dev/flower_photos")
	print("Model Exported")
相关推荐
B站计算机毕业设计超人39 分钟前
计算机毕业设计hadoop+spark+hive民宿推荐系统 酒店推荐系统 民宿价格预测 酒店价格 预测 机器学习 深度学习 Python爬虫 HDFS集群
大数据·python·机器学习·spark·课程设计·数据可视化·推荐算法
AIGC大时代1 小时前
如何判断一个学术论文是否具有真正的科研价值?ChatGPT如何提供帮助?
大数据·人工智能·物联网·chatgpt·aigc
岁月如歌,青春不败1 小时前
HMSC联合物种分布模型
开发语言·人工智能·python·深度学习·r语言
海域云赵从友2 小时前
香港 GPU 服务器托管引领 AI 创新,助力 AI 发展
运维·服务器·人工智能
四口鲸鱼爱吃盐2 小时前
Pytorch | 利用GRA针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python·深度学习·计算机视觉
蓝天星空2 小时前
制作一个类似ChatGPT的AI对话网站,模型能力使用ChatGPT
人工智能
汤姆和佩琦2 小时前
24-12-28-pytorch深度学习中音频I/O 中遇到的问题汇总
人工智能·pytorch·python·深度学习·音视频·i/o
静静AI学堂2 小时前
SCSA:探索空间与通道注意力之间的协同效应
人工智能·深度学习·yolo·目标跟踪
一只敲代码的猪2 小时前
Llama 3 后训练(三)
深度学习·神经网络·机器学习·llama
小成晓程3 小时前
PyQt6+OpenCV 项目练习
人工智能·opencv·计算机视觉