【机器学习】TensorFlowLite安装和模型训练

运行环境

Linux,部分库不支持Apple芯片

做AI这部分的开发,还是强烈建议装个Linux双系统或虚拟机

这些比折腾Windows和Mac上的移植环境要轻松得多

安装依赖
tex 复制代码
sudo apt install libportaudio2=19.6.0-1.2
pip3 install tf-models-official==2.3.0
pip3 install tensorflow-hub==0.12
pip3 install numpy==1.23.5
pip3 install pillow==10.1.0
pip3 install sentencepiece==0.1.99
pip3 install tensorflow-datasets==2.1.0
pip3 install fire==0.3.1
pip3 install flatbuffers==23.5.26
pip3 install absl-py==1.4.0
pip3 install urllib3==2.1.0
pip3 install tflite-support==0.4.2
pip3 install tensorflowjs==3.18.0
pip3 install tensorflow==2.15.0
pip3 install numba==0.58.1
pip3 install librosa==0.8.1
pip3 install lxml==4.6.1
pip3 install PyYAML==6.0.1
pip3 install matplotlib==3.4.0
pip3 install six==1.16.0
pip3 install tensorflow-addons==0.23.0
pip3 install neural-structured-learning==1.3.1
pip3 install tensorflow-model-optimization==0.7.5
pip3 install Cython==0.29.13
pip3 install protobuf==3.20.3
pip3 install tensorflow==2.8.4
pip3 install scann==1.2.6
pip3 install tflite-model-maker==0.4.2
准备训练图片
txt 复制代码
图片存放格式如下
--ModelFolder
----ClassFolder01
------Image01
------Image02
------Image03
----ClassFolder02
------Image01
------Image02
------Image03
----ClassFolder03
------Image01
------Image02
------Image03
TensorFlowLite对训练图片的格式要求非常严格,不仅仅是后缀名正确可以
测试图片和参考文档

https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz

https://www.tensorflow.org/lite/models/modify/model_maker/image_classification

https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/zh-cn/lite/models/modify/model_maker/image_classification.ipynb

模型训练与导出
python 复制代码
	import os
	import numpy
	import tensorflow as tf
	import matplotlib.pyplot as plot
	from tflite_model_maker import model_spec as ModelSpec
	from tflite_model_maker import image_classifier as ImageClassifier
	from tflite_model_maker.config import ExportFormat
	from tflite_model_maker.config import QuantizationConfig
	from tflite_model_maker.image_classifier import DataLoader
	from keras.layers import normalization
	
	print("Model Train Started")
	data = DataLoader.from_folder("/home/dev/flower_photos")
	trainData, testData = data.split(0.9)
	model = ImageClassifier.create(trainData)
	loss, accuracy = model.evaluate(testData)
	model.export("/home/dev/flower_photos")
	print("Model Exported")
相关推荐
极智视界1 分钟前
目标检测数据集 - 卫星图像船舶检测数据集下载
人工智能·目标检测·目标跟踪
宇来风满楼3 分钟前
U-KAN复现
人工智能·深度学习·神经网络·算法·机器学习
糖葫芦君6 分钟前
One-rec强化学习部分
人工智能·深度学习
极客BIM工作室11 分钟前
稀疏混合专家(Sparse MoE)架构论文全景
人工智能
IT_陈寒11 分钟前
SpringBoot3.0实战:5个高并发场景下的性能优化技巧,让你的应用快如闪电⚡
前端·人工智能·后端
秋邱12 分钟前
AR 定位技术深度解析:从 GPS 到视觉 SLAM 的轻量化实现
开发语言·前端·网络·人工智能·python·html·ar
serve the people16 分钟前
Agent知识库怎么解决海量文档数据的向量索引过度消耗内存的问题
人工智能
云飞云共享云桌面19 分钟前
佛山某机械加工设备工厂10个SolidWorks共享一台服务器的软硬件
大数据·运维·服务器·前端·网络·人工智能·性能优化
一水鉴天23 分钟前
整体设计 定稿 之17 从三种“闭”概念到 色调/文字/字体 中 三种字体(宋体/斜体/粗体)
人工智能
小陈phd23 分钟前
RAG从入门到精通(十四)——评估技术
人工智能·python