【机器学习】TensorFlowLite安装和模型训练

运行环境

Linux,部分库不支持Apple芯片

做AI这部分的开发,还是强烈建议装个Linux双系统或虚拟机

这些比折腾Windows和Mac上的移植环境要轻松得多

安装依赖
tex 复制代码
sudo apt install libportaudio2=19.6.0-1.2
pip3 install tf-models-official==2.3.0
pip3 install tensorflow-hub==0.12
pip3 install numpy==1.23.5
pip3 install pillow==10.1.0
pip3 install sentencepiece==0.1.99
pip3 install tensorflow-datasets==2.1.0
pip3 install fire==0.3.1
pip3 install flatbuffers==23.5.26
pip3 install absl-py==1.4.0
pip3 install urllib3==2.1.0
pip3 install tflite-support==0.4.2
pip3 install tensorflowjs==3.18.0
pip3 install tensorflow==2.15.0
pip3 install numba==0.58.1
pip3 install librosa==0.8.1
pip3 install lxml==4.6.1
pip3 install PyYAML==6.0.1
pip3 install matplotlib==3.4.0
pip3 install six==1.16.0
pip3 install tensorflow-addons==0.23.0
pip3 install neural-structured-learning==1.3.1
pip3 install tensorflow-model-optimization==0.7.5
pip3 install Cython==0.29.13
pip3 install protobuf==3.20.3
pip3 install tensorflow==2.8.4
pip3 install scann==1.2.6
pip3 install tflite-model-maker==0.4.2
准备训练图片
txt 复制代码
图片存放格式如下
--ModelFolder
----ClassFolder01
------Image01
------Image02
------Image03
----ClassFolder02
------Image01
------Image02
------Image03
----ClassFolder03
------Image01
------Image02
------Image03
TensorFlowLite对训练图片的格式要求非常严格,不仅仅是后缀名正确可以
测试图片和参考文档

https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz

https://www.tensorflow.org/lite/models/modify/model_maker/image_classification

https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/zh-cn/lite/models/modify/model_maker/image_classification.ipynb

模型训练与导出
python 复制代码
	import os
	import numpy
	import tensorflow as tf
	import matplotlib.pyplot as plot
	from tflite_model_maker import model_spec as ModelSpec
	from tflite_model_maker import image_classifier as ImageClassifier
	from tflite_model_maker.config import ExportFormat
	from tflite_model_maker.config import QuantizationConfig
	from tflite_model_maker.image_classifier import DataLoader
	from keras.layers import normalization
	
	print("Model Train Started")
	data = DataLoader.from_folder("/home/dev/flower_photos")
	trainData, testData = data.split(0.9)
	model = ImageClassifier.create(trainData)
	loss, accuracy = model.evaluate(testData)
	model.export("/home/dev/flower_photos")
	print("Model Exported")
相关推荐
丁学文武5 分钟前
大语言模型(LLM)是“预制菜”? 从应用到底层原理,在到中央厨房的深度解析
人工智能·语言模型·自然语言处理·大语言模型·大模型应用·预制菜
fie888910 分钟前
基于MATLAB的声呐图像特征提取与显示
开发语言·人工智能
文火冰糖的硅基工坊1 小时前
[嵌入式系统-100]:常见的IoT(物联网)开发板
人工智能·物联网·架构
刘晓倩2 小时前
实战任务二:用扣子空间通过任务提示词制作精美PPT
人工智能
shut up2 小时前
LangChain - 如何使用阿里云百炼平台的Qwen-plus模型构建一个桌面文件查询AI助手 - 超详细
人工智能·python·langchain·智能体
Hy行者勇哥2 小时前
公司全场景运营中 PPT 的类型、功能与作用详解
大数据·人工智能
FIN66682 小时前
昂瑞微:实现精准突破,攻坚射频“卡脖子”难题
前端·人工智能·安全·前端框架·信息与通信
FIN66682 小时前
昂瑞微冲刺科创板:硬科技与资本市场的双向奔赴
前端·人工智能·科技·前端框架·智能
m0_677034352 小时前
机器学习-推荐系统(下)
人工智能·机器学习
XIAO·宝2 小时前
深度学习------专题《神经网络完成手写数字识别》
人工智能·深度学习·神经网络