【机器学习】强化学习 (一)强化学习简介

一、强化学习简介

1.1 问题定义

1.2 马尔可夫决策过程

举例说明马尔可夫决策过程

例1:

例2:

执行动作的策略

强化学习的目标是让智能体通过不断尝试,找到最优的策略(policy),即在每个状态下选择什么动作,以最大化累积的奖励。强化学习的常见算法有:

  • Q学习(Q-learning):一种基于值函数(value function)的方法,它用一个表格(Q-table)记录每个状态-动作对的期望奖励(Q-value),并根据贪心或探索-利用的原则更新表格。

  • 策略梯度(policy gradient):一种基于策略函数(policy function)的方法,它用一个参数化的函数(如神经网络)表示策略,并根据奖励的梯度方向更新参数。

  • 深度强化学习(deep reinforcement learning):一种结合深度学习和强化学习的方法,它用深度神经网络来近似值函数或策略函数,如DQN、DDPG、A3C等。

如何通过马尔可夫决策过程找到最优策略?

强化学习在制造业中的应用

参考网址:

https://zh.wikipedia.org/wiki/强化学习 强化学习 - 维基百科,自由的百科全书 (wikipedia.org)

相关推荐
驭白.14 小时前
不止于自动化:新能源汽车智造的数字基座如何搭建?
大数据·人工智能·自动化·汽车·数字化转型·制造业
企业智能研究15 小时前
什么是数据治理?数据治理对企业有什么用?
大数据·人工智能·数据分析·agent
阿里云大数据AI技术15 小时前
面向 Interleaved Thinking 的大模型 Agent 蒸馏实践
人工智能
AI Echoes15 小时前
LangChain 非分割类型的文档转换器使用技巧
人工智能·python·langchain·prompt·agent
哔哔龙15 小时前
LangChain核心组件可用工具
人工智能
全栈独立开发者15 小时前
点餐系统装上了“DeepSeek大脑”:基于 Spring AI + PgVector 的 RAG 落地指南
java·人工智能·spring
2501_9418787416 小时前
在班加罗尔工程实践中构建可持续演进的机器学习平台体系与技术实现分享
人工智能·机器学习
guoketg16 小时前
BERT的技术细节和面试问题汇总
人工智能·深度学习·bert
永远在Debug的小殿下16 小时前
SLAM开发环境(虚拟机的安装)
人工智能
MF_AI16 小时前
大型烟雾火灾检测识别数据集:25w+图像,2类,yolo标注
图像处理·人工智能·深度学习·yolo·计算机视觉