【机器学习】强化学习 (一)强化学习简介

一、强化学习简介

1.1 问题定义

1.2 马尔可夫决策过程

举例说明马尔可夫决策过程

例1:

例2:

执行动作的策略

强化学习的目标是让智能体通过不断尝试,找到最优的策略(policy),即在每个状态下选择什么动作,以最大化累积的奖励。强化学习的常见算法有:

  • Q学习(Q-learning):一种基于值函数(value function)的方法,它用一个表格(Q-table)记录每个状态-动作对的期望奖励(Q-value),并根据贪心或探索-利用的原则更新表格。

  • 策略梯度(policy gradient):一种基于策略函数(policy function)的方法,它用一个参数化的函数(如神经网络)表示策略,并根据奖励的梯度方向更新参数。

  • 深度强化学习(deep reinforcement learning):一种结合深度学习和强化学习的方法,它用深度神经网络来近似值函数或策略函数,如DQN、DDPG、A3C等。

如何通过马尔可夫决策过程找到最优策略?

强化学习在制造业中的应用

参考网址:

https://zh.wikipedia.org/wiki/强化学习 强化学习 - 维基百科,自由的百科全书 (wikipedia.org)

相关推荐
小天才才5 分钟前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
MPCTHU12 分钟前
机器学习的数学基础:神经网络
机器学习
新加坡内哥谈技术35 分钟前
Meta计划借助AI实现广告创作全自动化
运维·人工智能·自动化
西猫雷婶1 小时前
pytorch基本运算-导数和f-string
人工智能·pytorch·python
Johny_Zhao1 小时前
华为MAAS、阿里云PAI、亚马逊AWS SageMaker、微软Azure ML各大模型深度分析对比
linux·人工智能·ai·信息安全·云计算·系统运维
顽强卖力1 小时前
第二十八课:深度学习及pytorch简介
人工智能·pytorch·深度学习
述雾学java1 小时前
深入理解 transforms.Normalize():PyTorch 图像预处理中的关键一步
人工智能·pytorch·python
武子康1 小时前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting
要努力啊啊啊1 小时前
使用 Python + SQLAlchemy 创建知识库数据库(SQLite)—— 构建本地知识库系统的基础《一》
数据库·人工智能·python·深度学习·自然语言处理·sqlite
武子康1 小时前
大数据-277 Spark MLib - 基础介绍 机器学习算法 Gradient Boosting GBDT算法原理 高效实现
大数据·人工智能·算法·机器学习·ai·spark-ml·boosting