【机器学习】强化学习 (一)强化学习简介

一、强化学习简介

1.1 问题定义

1.2 马尔可夫决策过程

举例说明马尔可夫决策过程

例1:

例2:

执行动作的策略

强化学习的目标是让智能体通过不断尝试,找到最优的策略(policy),即在每个状态下选择什么动作,以最大化累积的奖励。强化学习的常见算法有:

  • Q学习(Q-learning):一种基于值函数(value function)的方法,它用一个表格(Q-table)记录每个状态-动作对的期望奖励(Q-value),并根据贪心或探索-利用的原则更新表格。

  • 策略梯度(policy gradient):一种基于策略函数(policy function)的方法,它用一个参数化的函数(如神经网络)表示策略,并根据奖励的梯度方向更新参数。

  • 深度强化学习(deep reinforcement learning):一种结合深度学习和强化学习的方法,它用深度神经网络来近似值函数或策略函数,如DQN、DDPG、A3C等。

如何通过马尔可夫决策过程找到最优策略?

强化学习在制造业中的应用

参考网址:

https://zh.wikipedia.org/wiki/强化学习 强化学习 - 维基百科,自由的百科全书 (wikipedia.org)

相关推荐
过期动态2 小时前
【动手学深度学习】卷积神经网络(CNN)入门
人工智能·python·深度学习·pycharm·cnn·numpy
蔗理苦5 小时前
2025-04-05 吴恩达机器学习5——逻辑回归(2):过拟合与正则化
人工智能·python·机器学习·逻辑回归
程序猿阿伟6 小时前
《SQL赋能人工智能:解锁特征工程的隐秘力量》
数据库·人工智能·sql
csssnxy6 小时前
叁仟数智指路机器人是否支持远程监控和管理?
大数据·人工智能
车斗7 小时前
win10 笔记本电脑安装 pytorch+cuda+gpu 大模型开发环境过程记录
人工智能·pytorch·电脑
KY_chenzhao7 小时前
数据驱动防灾:AI 大模型在地质灾害应急决策中的关键作用。基于DeepSeek/ChatGPT的AI智能体开发
人工智能·chatgpt·智能体·deepseek·本地化部署
大多_C7 小时前
量化方法分类
人工智能·分类·数据挖掘
www_pp_7 小时前
# 基于 OpenCV 的人脸识别实战:从基础到进阶
人工智能·opencv·计算机视觉
三月七(爱看动漫的程序员)8 小时前
LLM面试题六
数据库·人工智能·gpt·语言模型·自然语言处理·llama·milvus
蹦蹦跳跳真可爱5899 小时前
Python----计算机视觉处理(Opencv:道路检测之车道线拟合)
开发语言·人工智能·python·opencv·计算机视觉