【机器学习300问】10、学习率设置过大或过小对训练有何影响?

在上一篇文章中,首次出现了学习率这个词,在这篇文章中我会详细介绍一下它是什么,到底对机器学习的训练有着怎样的影响。

一、学习率是什么?

先来复习一下梯度下降算法,在每次迭代过程中,算法计算目标函数关于当前参数值的梯度(即函数在该点的斜率或方向导数向量),然后沿着梯度的反方向移动一定的步长。更新规则可以表示为:

其中:

  • θ 表示模型参数。
  • η是学习率,决定了每一步沿梯度方向调整参数的幅度。
  • ∇f(θ) 是目标函数 f 关于参数 θ 的梯度。

学习率就是这里所说的步长,它是一个超参数,用于控制我们在梯度下降过程中每步的跳跃大小。也就是在每次梯度下降更新参数(如线性回归的权重和偏置)的时候,学习率决定了我们沿着负梯度方向走的步长。直观理解,就像你在山上往下走,而你的目标是走到山谷(函数最小值),每一步你到底能走多远,就是由学习率决定的。

超参数是指区别于机器学习最终要学到的模型参数而言的另一种参数。学习率这样的种超参数是由人工来设定的,那么就存在到底要设置多少合适的问题。

二、学习率设置过大或过小会对训练产生怎样的影响

(1)学习率设置过小

如果学习率太低,那么可能它需要非常多的迭代才能找到最低点。而且如果在遇到了下面这种情况,他还会陷入局部最小值而无法找到全局的最低点。
要很久才能找到最小值
陷入了局部最小值

(2)学习率设置过大

如果学习率设置得过大,那么在更新权重和偏置时,每一步可能会"跳过"最优解,也就是说,每一步修改的幅度过大,可能会错过最小的损失值。在图像中,表现为来回震荡并且可能导致发散,模型无法收敛,即使能收敛也需要非常多的时间。
左图会花很多时间 右图无法收敛

相关推荐
瞎某某Blinder1 天前
DFT学习记录[4] 电子和空穴的有效质量计算全流程
python·学习
硅谷秋水1 天前
RoboBrain 2.5:视野中的深度,思维中的时间
深度学习·机器学习·计算机视觉·语言模型·机器人
zhangfeng11331 天前
Warmup Scheduler深度学习训练中,在训练初期使用较低学习率进行预热(Warmup),然后再按照预定策略(如余弦退火、阶梯下降等)衰减学习率的方法
人工智能·深度学习·学习
沃达德软件1 天前
电信诈骗预警平台功能解析
大数据·数据仓库·人工智能·深度学习·机器学习·数据库开发
MaoziShan1 天前
CMU Subword Modeling | 07 Allomorphy
人工智能·机器学习·语言模型·自然语言处理
red_redemption1 天前
自由学习记录(118)
学习
小猪佩奇TONY1 天前
OpenCL 学习(5)---- OpenCL 内核和内核参数
学习
01二进制代码漫游日记1 天前
自定义类型:联合和枚举(一)
c语言·开发语言·学习·算法
非凡ghost1 天前
小X分身APP(手机分身类工具)
android·windows·学习·智能手机·软件需求
weixin_458872611 天前
东华复试OJ每日3题打卡·复盘82~84
学习