【机器学习300问】10、学习率设置过大或过小对训练有何影响?

在上一篇文章中,首次出现了学习率这个词,在这篇文章中我会详细介绍一下它是什么,到底对机器学习的训练有着怎样的影响。

一、学习率是什么?

先来复习一下梯度下降算法,在每次迭代过程中,算法计算目标函数关于当前参数值的梯度(即函数在该点的斜率或方向导数向量),然后沿着梯度的反方向移动一定的步长。更新规则可以表示为:

其中:

  • θ 表示模型参数。
  • η是学习率,决定了每一步沿梯度方向调整参数的幅度。
  • ∇f(θ) 是目标函数 f 关于参数 θ 的梯度。

学习率就是这里所说的步长,它是一个超参数,用于控制我们在梯度下降过程中每步的跳跃大小。也就是在每次梯度下降更新参数(如线性回归的权重和偏置)的时候,学习率决定了我们沿着负梯度方向走的步长。直观理解,就像你在山上往下走,而你的目标是走到山谷(函数最小值),每一步你到底能走多远,就是由学习率决定的。

超参数是指区别于机器学习最终要学到的模型参数而言的另一种参数。学习率这样的种超参数是由人工来设定的,那么就存在到底要设置多少合适的问题。

二、学习率设置过大或过小会对训练产生怎样的影响

(1)学习率设置过小

如果学习率太低,那么可能它需要非常多的迭代才能找到最低点。而且如果在遇到了下面这种情况,他还会陷入局部最小值而无法找到全局的最低点。
要很久才能找到最小值
陷入了局部最小值

(2)学习率设置过大

如果学习率设置得过大,那么在更新权重和偏置时,每一步可能会"跳过"最优解,也就是说,每一步修改的幅度过大,可能会错过最小的损失值。在图像中,表现为来回震荡并且可能导致发散,模型无法收敛,即使能收敛也需要非常多的时间。
左图会花很多时间 右图无法收敛

相关推荐
知识分享小能手几秒前
CentOS Stream 9入门学习教程,从入门到精通,CentOS Stream 9 的过滤器 —— 语法详解与实战案例(18)
linux·学习·centos
deng-c-f1 分钟前
Linux C/C++ 学习日记(51):内存池
jvm·学习
刘孬孬沉迷学习1 分钟前
WebRTC 协议
学习·5g·webrtc·信息与通信·信号处理
丝斯20114 分钟前
AI学习笔记整理(33)—— 视觉Transformer (ViT)与自注意力机制
人工智能·笔记·学习
【上下求索】6 分钟前
学习笔记096——Windows postgreSQL-18.1[压缩包版本]
windows·笔记·学习·postgresql
加点油。。。。16 分钟前
【强化学习】——策略梯度方法
人工智能·机器学习·强化学习
路在脚下,梦在心里26 分钟前
net学习总结
android·学习
deng-c-f30 分钟前
Linux C/C++ 学习日记(52):原子操作(1):cpu缓存、可见性、顺序性、内存序、缓存一致性的介绍
学习·原子操作
●VON31 分钟前
小V健身助手开发手记(六):KeepService 的设计、实现与架构演进
学习·架构·openharmony·开源鸿蒙·von
俊俊谢32 分钟前
【机器学习】python使用支持向量机解决兵王问题(基于libsvm库)
python·机器学习·支持向量机·svm·libsvm