监督学习 - 梯度提升机(Gradient Boosting Machines,GBM)

什么是机器学习

梯度提升机(Gradient Boosting Machines,GBM)是一种集成学习 方法,通过将多个弱学习器(通常是决策树)组合成一个强学习器来提高模型的性能。GBM的训练过程是通过迭代,每一步都根据前一步的模型误差来训练一个新的弱学习器,然后将其加到整体模型中。

以下是梯度提升机的基本原理和使用方法:

基本原理

  • 弱学习器: GBM通常使用决策树作为基本的弱学习器,每个决策树负责对前一步模型的残差进行拟合。
  • 梯度提升: 训练过程通过梯度下降进行,每一步都试图最小化损失函数的梯度。新模型的训练目标是拟合前一步模型的负梯度。
  • 正则化: 为了防止过拟合,通常对每个弱学习器进行正则化,限制树的深度或节点的最小样本数。
  • 集成: 最终的预测是所有弱学习器的加权和,权重是通过梯度提升过程中学到的。

使用方法

GBM的使用步骤通常包括以下几个阶段:

  • 数据准备: 收集并准备好带标签的训练数据集。
  • 选择基础学习器: 选择基础学习器,通常是决策树。
  • 选择损失函数: 选择适当的损失函数,不同问题可能需要不同的损失函数。
  • 选择正则化参数: 设置正则化参数,以控制弱学习器的复杂度。
  • 选择学习率: 设置学习率,控制每一步迭代中新模型的权重。
  • 训练模型: 通过迭代训练弱学习器,根据梯度下降逐步提升模型。
  • 预测: 使用训练好的模型进行新数据的预测。

代码示例(使用Python和scikit-learn

以下是一个简单的梯度提升机分类的示例:

python 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy_score, classification_report

# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建梯度提升机模型
model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)

# 训练模型
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)

print(f'Accuracy: {accuracy}')
print(f'Classification Report:\n{report}')

在这个示例中,我们使用了GradientBoostingClassifier,你可以根据问题的性质调整模型的超参数,如n_estimators(弱学习器的数量)、learning_rate(学习率)和max_depth(树的深度)等。详细的参数说明可以在官方文档中找到。

相关推荐
向左转, 向右走ˉ5 分钟前
为什么分类任务偏爱交叉熵?MSE 为何折戟?
人工智能·深度学习·算法·机器学习·分类·数据挖掘
抓个马尾女孩9 分钟前
什么是熵、交叉熵、相对熵(KL散度)
人工智能·机器学习
张较瘦_1 小时前
[论文阅读] 人工智能 | 机器学习工作流的“救星”:数据虚拟化服务如何解决数据管理难题?
论文阅读·人工智能·机器学习
霜绛1 小时前
机器学习笔记(四)——聚类算法KNN、Kmeans、Dbscan
笔记·算法·机器学习·kmeans·聚类
青云交2 小时前
Java 大视界 -- Java 大数据机器学习模型在金融信用评级模型优化与信用风险动态管理中的应用(371)
java·大数据·机器学习·信用评级·动态风控·跨境金融·小贷风控
zzywxc7872 小时前
编程算法在金融、医疗、教育、制造业的落地应用。
人工智能·深度学习·算法·机器学习·金融·架构·开源
笙囧同学5 小时前
基于大数据技术的疾病预警系统:从数据预处理到机器学习的完整实践(后附下载链接)
大数据·网络·机器学习
愚戏师6 小时前
机器学习(重学版)基础篇(算法与模型一)
人工智能·算法·机器学习
zzywxc78711 小时前
AI在编程、测试、数据分析等领域的前沿应用(技术报告)
人工智能·深度学习·机器学习·数据挖掘·数据分析·自动化·ai编程
旧时光巷12 小时前
【机器学习-4】 | 集成学习 / 随机森林篇
python·随机森林·机器学习·集成学习·sklearn·boosting·bagging