Pytorch数据操作

数据操作

python 复制代码
# 导入PyTorch
import torch

[张量表示一个由数值组成的数组,这个数组可能有多个维度 ]。 具有一个轴的张量对应数学上的向量

); 具有两个轴的张量对应数学上的矩阵(matrix); 具有两个轴以上的张量没有特殊的数学名称。

首先,我们可以使用 arange 创建一个行向量 x。这个行向量包含以0开始的前12个整数,它们默认创建为整数。也可指定创建类型为浮点数。张量中的每个值都称为张量的 元素 (element)。例如,张量 x 中有 12 个元素。除非额外指定,新的张量将存储在内存中,并采用基于CPU的计算。

python 复制代码
x = torch.arange(15)
x 
#:tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 13, 14])

[可以通过张量的shape属性来访问张量(沿每个轴的长度)的*形状*] (和张量中元素的总数)。

python 复制代码
x.shape
#:torch.Size([15])

如果只想知道张量中元素的总数,即形状的所有元素乘积,可以检查它的大小(size)。 因为这里在处理的是一个向量,所以它的shape与它的size相同。

python 复制代码
x.numel()
#:15

[要想改变一个张量的形状而不改变元素数量和元素值,可以调用reshape函数。 ] 例如,可以把张量x从形状为(12,)的行向量转换为形状为(3,4)的矩阵。 这个新的张量包含与转换前相同的值,但是它被看成一个3行4列的矩阵。 要重点说明一下,虽然张量的形状发生了改变,但其元素值并没有变。 注意,通过改变张量的形状,张量的大小不会改变。

python 复制代码
X = x.reshape(3,5)
X

#:

tensor([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[10, 11, 12, 13, 14]])

我们不需要通过手动指定每个维度来改变形状。 也就是说,如果我们的目标形状是(高度,宽度), 那么在知道宽度后,高度会被自动计算得出,不必我们自己做除法。 在上面的例子中,为了获得一个3行的矩阵,我们手动指定了它有3行和4列。 幸运的是,我们可以通过-1来调用此自动计算出维度的功能。 即我们可以用x.reshape(-1,4)x.reshape(3,-1)来取代x.reshape(3,4)

有时,我们希望[使用全0、全1、其他常量,或者从特定分布中随机采样的数字]来初始化矩阵。 我们可以创建一个形状为(2,3,4)的张量,其中所有元素都设置为0。代码如下:

python 复制代码
torch.zeros((2,3,4))

#:

tensor([[[0., 0., 0., 0.],

[0., 0., 0., 0.],

[0., 0., 0., 0.]],

[[0., 0., 0., 0.],

[0., 0., 0., 0.],

[0., 0., 0., 0.]]])

同样,我们可以创建一个形状为(2,3,4)的张量,其中所有元素都设置为1。代码如下:

python 复制代码
torch.ones((2,3,4))

#:

tensor([[[1., 1., 1., 1.],

[1., 1., 1., 1.],

[1., 1., 1., 1.]],

[[1., 1., 1., 1.],

[1., 1., 1., 1.],

[1., 1., 1., 1.]]])

相关推荐
好看资源平台4 分钟前
网络爬虫——综合实战项目:多平台房源信息采集与分析系统
爬虫·python
果冻人工智能24 分钟前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工25 分钟前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
进击的六角龙25 分钟前
深入浅出:使用Python调用API实现智能天气预报
开发语言·python
檀越剑指大厂26 分钟前
【Python系列】浅析 Python 中的字典更新与应用场景
开发语言·python
石小石Orz27 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
湫ccc33 分钟前
Python简介以及解释器安装(保姆级教学)
开发语言·python
孤独且没人爱的纸鹤36 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭39 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~40 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j