Pytorch数据操作

数据操作

python 复制代码
# 导入PyTorch
import torch

[张量表示一个由数值组成的数组,这个数组可能有多个维度 ]。 具有一个轴的张量对应数学上的向量

); 具有两个轴的张量对应数学上的矩阵(matrix); 具有两个轴以上的张量没有特殊的数学名称。

首先,我们可以使用 arange 创建一个行向量 x。这个行向量包含以0开始的前12个整数,它们默认创建为整数。也可指定创建类型为浮点数。张量中的每个值都称为张量的 元素 (element)。例如,张量 x 中有 12 个元素。除非额外指定,新的张量将存储在内存中,并采用基于CPU的计算。

python 复制代码
x = torch.arange(15)
x 
#:tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 13, 14])

[可以通过张量的shape属性来访问张量(沿每个轴的长度)的*形状*] (和张量中元素的总数)。

python 复制代码
x.shape
#:torch.Size([15])

如果只想知道张量中元素的总数,即形状的所有元素乘积,可以检查它的大小(size)。 因为这里在处理的是一个向量,所以它的shape与它的size相同。

python 复制代码
x.numel()
#:15

[要想改变一个张量的形状而不改变元素数量和元素值,可以调用reshape函数。 ] 例如,可以把张量x从形状为(12,)的行向量转换为形状为(3,4)的矩阵。 这个新的张量包含与转换前相同的值,但是它被看成一个3行4列的矩阵。 要重点说明一下,虽然张量的形状发生了改变,但其元素值并没有变。 注意,通过改变张量的形状,张量的大小不会改变。

python 复制代码
X = x.reshape(3,5)
X

#:

tensor([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[10, 11, 12, 13, 14]])

我们不需要通过手动指定每个维度来改变形状。 也就是说,如果我们的目标形状是(高度,宽度), 那么在知道宽度后,高度会被自动计算得出,不必我们自己做除法。 在上面的例子中,为了获得一个3行的矩阵,我们手动指定了它有3行和4列。 幸运的是,我们可以通过-1来调用此自动计算出维度的功能。 即我们可以用x.reshape(-1,4)x.reshape(3,-1)来取代x.reshape(3,4)

有时,我们希望[使用全0、全1、其他常量,或者从特定分布中随机采样的数字]来初始化矩阵。 我们可以创建一个形状为(2,3,4)的张量,其中所有元素都设置为0。代码如下:

python 复制代码
torch.zeros((2,3,4))

#:

tensor([[[0., 0., 0., 0.],

[0., 0., 0., 0.],

[0., 0., 0., 0.]],

[[0., 0., 0., 0.],

[0., 0., 0., 0.],

[0., 0., 0., 0.]]])

同样,我们可以创建一个形状为(2,3,4)的张量,其中所有元素都设置为1。代码如下:

python 复制代码
torch.ones((2,3,4))

#:

tensor([[[1., 1., 1., 1.],

[1., 1., 1., 1.],

[1., 1., 1., 1.]],

[[1., 1., 1., 1.],

[1., 1., 1., 1.],

[1., 1., 1., 1.]]])

相关推荐
biter00883 分钟前
opencv(15) OpenCV背景减除器(Background Subtractors)学习
人工智能·opencv·学习
吃个糖糖10 分钟前
35 Opencv 亚像素角点检测
人工智能·opencv·计算机视觉
qq_5290252928 分钟前
Torch.gather
python·深度学习·机器学习
数据小爬虫@28 分钟前
如何高效利用Python爬虫按关键字搜索苏宁商品
开发语言·爬虫·python
Cachel wood1 小时前
python round四舍五入和decimal库精确四舍五入
java·linux·前端·数据库·vue.js·python·前端框架
IT古董1 小时前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习
凯哥是个大帅比1 小时前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
終不似少年遊*1 小时前
pyecharts
python·信息可视化·数据分析·学习笔记·pyecharts·使用技巧
Python之栈1 小时前
【无标题】
数据库·python·mysql
m0_748232921 小时前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理