这也是一个通用的方案,使用peft微调LLM。
准备自己的数据集
根据情况改就行了,jsonl格式,三个字段:context, answer, question
python
import pandas as pd
import random
import json
data = pd.read_csv('dataset.csv')
train_data = data[['prompt','Code']]
train_data = train_data.values.tolist()
random.shuffle(train_data)
train_num = int(0.8 * len(train_data))
with open('train_data.jsonl', 'w') as f:
for d in train_data[:train_num]:
d = {
'context':'',
'question':d[0],
'answer':d[1]
}
f.write(json.dumps(d)+'\n')
with open('val_data.jsonl', 'w') as f:
for d in train_data[train_num:]:
d = {
'context':'',
'question':d[0],
'answer':d[1]
}
f.write(json.dumps(d)+'\n')
初始化
python
from datetime import datetime
import os
import sys
import torch
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
)
from transformers import (AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM,
TrainingArguments, Trainer, DataCollatorForSeq2Seq)
# 加载自己的数据集
from datasets import load_dataset
train_dataset = load_dataset('json', data_files='train_data.jsonl', split='train')
eval_dataset = load_dataset('json', data_files='val_data.jsonl', split='train')
# 读取模型
base_model = 'CodeLlama-7b-Instruct-hf'
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
low_cpu_mem_usage=True
)
tokenizer = AutoTokenizer.from_pretrained(base_model)
微调前的效果
python
tokenizer.pad_token = tokenizer.eos_token
prompt = """You are programming coder.
Now answer the question:
{}"""
prompts = [prompt.format(train_dataset[i]['question']) for i in [1,20,32,45,67]]
model_input = tokenizer(prompts, return_tensors="pt", padding=True).to("cuda")
model.eval()
with torch.no_grad():
outputs = model.generate(**model_input, max_new_tokens=300)
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(outputs)
进行微调
python
tokenizer.add_eos_token = True
tokenizer.pad_token_id = 0
tokenizer.padding_side = "left"
def tokenize(prompt):
result = tokenizer(
prompt,
truncation=True,
max_length=512,
padding=False,
return_tensors=None,
)
# "self-supervised learning" means the labels are also the inputs:
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt =f"""You are a powerful programming model. Your job is to answer questions about a database. You are given a question.
You must output the code that answers the question.
### Input:
{data_point["question"]}
### Response:
{data_point["answer"]}
"""
return tokenize(full_prompt)
tokenized_train_dataset = train_dataset.map(generate_and_tokenize_prompt)
tokenized_val_dataset = eval_dataset.map(generate_and_tokenize_prompt)
model.train() # put model back into training mode
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=16,
lora_alpha=16,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
if torch.cuda.device_count() > 1:
model.is_parallelizable = True
model.model_parallel = True
batch_size = 128
per_device_train_batch_size = 32
gradient_accumulation_steps = batch_size // per_device_train_batch_size
output_dir = "code-llama-ft"
training_args = TrainingArguments(
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
max_steps=400,
learning_rate=3e-4,
fp16=True,
logging_steps=10,
optim="adamw_torch",
evaluation_strategy="steps", # if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=20,
save_steps=20,
output_dir=output_dir,
load_best_model_at_end=False,
group_by_length=True, # group sequences of roughly the same length together to speed up training
report_to="none", # if use_wandb else "none", wandb
run_name=f"codellama-{datetime.now().strftime('%Y-%m-%d-%H-%M')}", # if use_wandb else None,
)
trainer = Trainer(
model=model,
train_dataset=tokenized_train_dataset,
eval_dataset=tokenized_val_dataset,
args=training_args,
data_collator=DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
开始训练
python
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())).__get__(
model, type(model)
)
if torch.__version__ >= "2" and sys.platform != "win32":
print("compiling the model")
model = torch.compile(model)
trainer.train()
进行测试
python
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer
base_model = 'CodeLlama-7b-Instruct-hf'
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(base_model)
output_dir = "code-llama-ft"
model = PeftModel.from_pretrained(model, output_dir)
eval_prompt = """You are a powerful programming model. Your job is to answer questions about a database. You are given a question.
You must output the code that answers the question.
### Input:
Write a function in Java that takes an array and returns the sum of the numbers in the array, or 0 if the array is empty. Except the number 13 is very unlucky, so it does not count any 13, or any number that immediately follows a 13.
### Response:
"""
model_input = tokenizer(eval_prompt, return_tensors="pt").to("cuda")
model.eval()
with torch.no_grad():
outputs = model.generate(**model_input, max_new_tokens=100)[0]
print(tokenizer.decode(outputs, skip_special_tokens=True))