[2025CVPR-图象分类方向]CATANet:用于轻量级图像超分辨率的高效内容感知标记聚合

1. 研究背景与动机

  • 问题:Transformer在图像超分辨率(SR)中计算复杂度随空间分辨率呈二次增长,现有方法(如局部窗口、轴向条纹)因内容无关性无法有效捕获长距离依赖。
  • 现有局限
    • SPIN等聚类方法依赖稀疏聚类中心传播信息,导致近似粗糙且推理速度慢(需迭代更新中心)。
    • ATD引入字典学习但计算负担大,不适合轻量化场景。
  • 解决方案 :提出 CATANet,通过内容感知令牌聚合实现高效长距离依赖建模,兼顾性能与速度。

2. 方法设计

2.1 整体架构

三阶段流程​:

  1. 浅层特征提取:3×3卷积映射LR图像至高维特征。
  2. 深层特征提取 :K个残差组(RG),每个RG包含:
    • 令牌聚合块(TAB)​:核心创新模块。
    • 局部区域自注意力(LRSA)​:增强局部细节。
    • 3×3卷积:细化特征并学习位置嵌入。
  3. 图像重建:全局残差信息 + LR上采样 → 输出HR图像。

2.2 令牌聚合块(TAB)

  • 四大组件
    • 内容感知令牌聚合(CATA)​
      • 共享全局令牌中心,仅训练阶段通过指数移动平均(EMA)更新(λ=0.999)。
      • 按相似度将令牌分组(图4),解决SPIN的推理延迟问题。
      • 子组划分(S)​ :平衡并行效率(图3b),提升速度2倍(表6)。
    • 组内自注意力(IASA)​
      • 组内令牌交互,允许关注相邻子组(图3c),提升PSNR 0.02-0.05dB(表1)。
    • 组间交叉注意力(IRCA)​
      • 子组与令牌中心交叉注意力,增强全局交互(M≪N控制计算量)。
    • 1×1卷积:融合IASA与IRCA输出,加法融合优于拼接(表5)。

2.3 局部区域自注意力(LRSA)​
  • 采用重叠块机制(参考HPINet),学习局部细节特征。
  • 配合ConvFFN进行通道维度特征交互。

3. 实验与分析

3.1 性能对比
  • 数据集:DIV2K训练,Set5/Set14/B100/Urban100/Manga109测试。
  • 结果 (表2):
    • 轻量化优势:参数量(535K)低于SPIN(555K),PSNR显著提升(×4最高+0.33dB)。
    • 视觉对比:恢复边缘更清晰,伪影更少(图6)。
    • 速度:推理速度达SPIN的5倍,比SwinIR快2倍。
3.2 消融实验
  • IASA+IRCA必要性:移除后PSNR下降0.15--0.22dB(表3)。
  • CATA设计:优于Clustered Attention/NLSA等(表4)。
  • 子组划分:推理速度从188ms→86ms(表6)。
3.3 可视化分析
  • LAM热力图:TAB捕获更长距离依赖(图5)。
  • 令牌分组:内容相似区域被精准聚合。

4. 结论与贡献

  • 核心贡献
    1. CATANet:首个结合内容感知令牌聚合与注意力的轻量化SR网络。
    2. CATA模块:仅训练阶段更新令牌中心,消除推理延迟。
    3. 双注意力机制:IASA实现细粒度长程交互,IRCA强化全局信息。
  • 性能突破:PSNR最大提升0.60dB(自集成),推理速度翻倍,适用于移动设备。

论文地址:https://arxiv.org/pdf/2503.06896v1

相关推荐
雍凉明月夜2 分钟前
视觉opencv学习笔记Ⅴ-数据增强(2)
人工智能·python·opencv·计算机视觉
JoannaJuanCV7 分钟前
自动驾驶—CARLA仿真(24)sensor_synchronization demo
网络·人工智能·自动驾驶·carla
JoannaJuanCV8 分钟前
自动驾驶—CARLA仿真(14)draw_skeleton demo
人工智能·机器学习·自动驾驶
测试人社区-千羽8 分钟前
飞机自动驾驶系统测试:安全关键系统的全面验证框架
人工智能·安全·面试·职场和发展·自动化·自动驾驶·测试用例
Abona10 分钟前
广义端到端(GE2E)自动驾驶技术综述:范式演进、核心挑战与破局路径
人工智能·机器学习·自动驾驶
CSDN官方博客10 分钟前
CSDN社区镜像创作活动
大数据·运维·人工智能
棒棒的皮皮17 分钟前
【OpenCV】Python图像处理几何变换之缩放
图像处理·python·opencv·计算机视觉
JoannaJuanCV19 分钟前
自动驾驶—CARLA仿真(12)client_bounding_boxes demo
人工智能·自动驾驶·pygame·carla
志凌海纳SmartX19 分钟前
AI知识科普丨ModelOps / MLOps / LLMOps 有什么区别?
人工智能
SACKings20 分钟前
神经网络的层是什么?
人工智能·深度学习·神经网络