查看神经网络中间层特征矩阵及卷积核参数

可视化feature maps以及kernel weights,使用alexnet模型进行演示。

1. 查看中间层特征矩阵

alexnet模型,修改了向前传播

python 复制代码
import torch
from torch import nn
from torch.nn import functional as F

# 对花图像数据进行分类
class AlexNet(nn.Module):
    def __init__(self,num_classes=1000,init_weights=False, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.conv1 = nn.Conv2d(3,48,11,4,2)
        self.pool1 = nn.MaxPool2d(3,2)
        self.conv2 = nn.Conv2d(48,128,5,padding=2)
        self.pool2 = nn.MaxPool2d(3,2)
        self.conv3 = nn.Conv2d(128,192,3,padding=1)
        self.conv4 = nn.Conv2d(192,192,3,padding=1)
        self.conv5 = nn.Conv2d(192,128,3,padding=1)
        self.pool3 = nn.MaxPool2d(3,2)

        self.fc1 = nn.Linear(128*6*6,2048)
        self.fc2 = nn.Linear(2048,2048)
        self.fc3 = nn.Linear(2048,num_classes)
        # 是否进行初始化
        # 其实我们并不需要对其进行初始化,因为在pytorch中,对我们对卷积及全连接层,自动使用了凯明初始化方法进行了初始化
        if init_weights:
            self._initialize_weights()

    def forward(self,x):
        outputs = []  # 定义一个列表,返回我们要查看的哪一层的输出特征矩阵
        x = self.conv1(x)
        outputs.append(x)
        x = self.pool1(F.relu(x,inplace=True))
        x = self.conv2(x)
        outputs.append(x)
        x = self.pool2(F.relu(x,inplace=True))
        x = self.conv3(x)
        outputs.append(x)
        x = F.relu(x,inplace=True)
        x = F.relu(self.conv4(x),inplace=True)
        x = self.pool3(F.relu(self.conv5(x),inplace=True))
        x = x.view(-1,128*6*6)
        x = F.dropout(x,p=0.5)
        x = F.relu(self.fc1(x),inplace=True)
        x = F.dropout(x,p=0.5)
        x = F.relu(self.fc2(x),inplace=True)
        x = self.fc3(x)

        # for name,module in self.named_children():
        #     x = module(x)
        #     if name == ["conv1","conv2","conv3"]:
        #         outputs.append(x)
        return outputs

    # 初始化权重
    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m,nn.Conv2d):
                # 凯明初始化 - 何凯明
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m,nn.Linear):
                nn.init.normal_(m.weight, 0,0.01)  # 使用正态分布给权重赋值进行初始化
                nn.init.constant_(m.bias,0)

拿到向前传播的结果,对特征图进行可视化,这里,我们使用训练好的模型,直接加载模型参数。

注意,要使用与训练时相同的数据预处理。

python 复制代码
import matplotlib.pyplot as plt
from torchvision import transforms
import alexnet_model
import torch
from PIL import Image
import numpy as np
from alexnet_model import AlexNet

# AlexNet 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
# 实例化模型
model = AlexNet(num_classes=5)
weights = torch.load("./alexnet_weight_20.pth", map_location="cpu")
model.load_state_dict(weights)

image = Image.open("./images/yjx.jpg")
image = transform(image)
image = image.unsqueeze(0)

with torch.no_grad():
    output = model(image)

for feature_map in output:
    # (N,C,W,H) -> (C,W,H)
    im = np.squeeze(feature_map.detach().numpy())
    # (C,W,H) -> (W,H,C)
    im = np.transpose(im,[1,2,0])
    plt.figure()
    # 展示当前层的前12个通道
    for i in range(12):
        ax = plt.subplot(3,4,i+1) # i+1: 每个图的索引
        plt.imshow(im[:,:,i],cmap='gray')
    plt.show()

结果:


2. 查看卷积核参数

python 复制代码
import matplotlib.pyplot as plt
import numpy as np
import torch

from AlexNet.model import AlexNet

# 实例化模型
model = AlexNet(num_classes=5)
weights = torch.load("./alexnet_weight_20.pth", map_location="cpu")
model.load_state_dict(weights)

weights_keys = model.state_dict().keys()
for key in weights_keys:
    if "num_batches_tracked" in key:
        continue
    weight_t = model.state_dict()[key].numpy()
    weight_mean = weight_t.mean()
    weight_std = weight_t.std(ddof=1)
    weight_min = weight_t.min()
    weight_max = weight_t.max()
    print("mean is {}, std is {}, min is {}, max is {}".format(weight_mean, weight_std, weight_min, weight_max))

    weight_vec = np.reshape(weight_t,[-1])
    plt.hist(weight_vec,bins=50)
    plt.title(key)
    plt.show()

结果:

相关推荐
三月七(爱看动漫的程序员)1 小时前
Exploring Prompt Engineering: A Systematic Review with SWOT Analysis
人工智能·gpt·学习·语言模型·自然语言处理·chatgpt·prompt
简简单单做算法1 小时前
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
神经网络·机器学习·人脸识别·dnn·grnn·pnn·orl人脸库
L_cl1 小时前
【NLP 3、深度学习简介】
人工智能·深度学习
黄卷青灯771 小时前
NLP自然语言处理包含哪些方面?
人工智能·自然语言处理·nlp
Guofu_Liao1 小时前
大语言模型---RewardBench 介绍;RewardBench 的主要功能;适用场景
人工智能·语言模型·自然语言处理
Elastic 中国社区官方博客2 小时前
使用 Spring AI + Elasticsearch 让 RAG 变得简单
java·大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索
weixin_543662862 小时前
BERT的中文问答系统35
人工智能·深度学习·bert
kejijianwen2 小时前
Soul App创始人张璐团队亮相GITEX GLOBAL 2024,展示多模态AI的交互创新
人工智能
想你依然心痛2 小时前
【AI赋能电商】探索人工智能在购物推荐、会员管理和商品定价中的创新应用及其对销售效率和用户体验的影响
人工智能·ux
baijin_cha3 小时前
深度学习基础02_损失函数&BP算法(上)
人工智能·笔记·深度学习