【头歌】------数据分析与实践-python-网络爬虫-Scrapy爬虫基础-网页数据解析-requests 爬虫-JSON基础
-
- [Pandas 初体验](#Pandas 初体验)
-
- [第1关 爬取网页的表格信息](#第1关 爬取网页的表格信息)
- [第2关 爬取表格中指定单元格的信息](#第2关 爬取表格中指定单元格的信息)
- [第3关 将单元格的信息保存到列表并排序](#第3关 将单元格的信息保存到列表并排序)
- [第4关 爬取div标签的信息](#第4关 爬取div标签的信息)
- [第5关 爬取单页多个div标签的信息](#第5关 爬取单页多个div标签的信息)
- [第6关 爬取多个网页的多个div标签的信息](#第6关 爬取多个网页的多个div标签的信息)
- Scrapy爬虫基础
-
- [第1关 Scarpy安装与项目创建](#第1关 Scarpy安装与项目创建)
- [第2关 Scrapy核心原理](#第2关 Scrapy核心原理)
- 网页数据解析
-
- [第1关 XPath解析网页](#第1关 XPath解析网页)
- [第2关 BeautifulSoup解析网页](#第2关 BeautifulSoup解析网页)
- [requests 爬虫](#requests 爬虫)
-
- [第1关 requests 基础](#第1关 requests 基础)
- [第2关 requests 进阶](#第2关 requests 进阶)
- JSON基础
-
- [第1关 JSON篇:JSON基础知识](#第1关 JSON篇:JSON基础知识)
- [第2关 JSON篇:使用json库](#第2关 JSON篇:使用json库)
Pandas 初体验
第1关 爬取网页的表格信息
python
复制代码
import requests
from bs4 import BeautifulSoup
#代码开始
respose = requests.get("https://tjj.hunan.gov.cn/hntj/tjfx/tjgb/pcgbv/202105/t20210519_19079329.html")
respose.encoding = 'utf-8'
content = respose.text.encode()
soup = BeautifulSoup(content, "html.parser")
bg = soup.find('table')
#代码结束
print(bg)
第2关 爬取表格中指定单元格的信息
python
复制代码
import requests
from bs4 import BeautifulSoup
url = "https://tjj.hunan.gov.cn/hntj/tjfx/tjgb/pcgbv/202105/t20210519_19079329.html"
r=requests.get(url)
r.encoding = 'utf-8'
soup=BeautifulSoup(r.text,"html.parser")
bg=soup.find('table')
#代码开始
alltr = bg.findAll('tr')
for index, i in enumerate(alltr, 1): # 使用enumerate获取索引
if index >= 4: # 从第四行开始输出
allspan = i.findAll('span')
for count, j in enumerate(allspan,1):
print(j.text,end=" ")
print() # 在第二个循环结束后换行
#代码结束
第3关 将单元格的信息保存到列表并排序
python
复制代码
import requests
from bs4 import BeautifulSoup
url = "https://tjj.hunan.gov.cn/hntj/tjfx/tjgb/pcgbv/202105/t20210519_19079329.html"
r=requests.get(url)
r.encoding = 'utf-8'
soup=BeautifulSoup(r.text,"html.parser")
bg=soup.find('table')
lb=[]
#代码开始
name_num = {}
use = []
alltr = bg.findAll('tr')
for index, i in enumerate(alltr, 1): # 使用enumerate获取索引
if index >= 4: # 从第四行开始输出
allspan = i.findAll('span')
name = allspan[0].text
num = allspan[1].text
name_num[name] = int(num)
use.append(int(num))
use.sort(reverse=True)
lb = [ [k,v] for k,v in sorted(name_num.items(),key=lambda item: use.index(item[1]))]
#代码结束
for lbxx in lb:
print(lbxx[0],lbxx[1])
第4关 爬取div标签的信息
python
复制代码
import requests
from bs4 import BeautifulSoup
url = 'https://www.hnu.edu.cn/xysh/xshd.htm'
r = requests.get(url)
r.encoding = 'utf-8'
#代码开始
soup = BeautifulSoup(r.text,'html.parser')
jzsj = soup.find('div',class_= 'xinwen-sj-top').string.strip()
jzbt = soup.find('div',attrs={'class','xinwen-wen-bt'}).string.strip()
jzdd = soup.find('div',attrs={'class','xinwen-wen-zy'}).text.strip()
#代码结束
f1=open("jzxx.txt","w")
f1.write(jzsj+"\n")
f1.write(jzbt+"\n")
f1.write(jzdd+"\n")
f1.close()
第5关 爬取单页多个div标签的信息
python
复制代码
import requests
from bs4 import BeautifulSoup
url = 'https://www.hnu.edu.cn/xysh/xshd.htm'
r = requests.get(url)
r.encoding = 'utf-8'
jzxx=[]
#代码开始
#代码结束
f1=open("jzxx2.txt","w")
for xx in jzxx:
f1.write(",".join(xx)+"\n")
f1.close()
第6关 爬取多个网页的多个div标签的信息
python
复制代码
#湖南大学信科院陈娟版权所有
import requests
from bs4 import BeautifulSoup
f1=open("jz.txt","w",encoding="utf8")
#代码开始
#代码结束
f1.close()
Scrapy爬虫基础
第1关 Scarpy安装与项目创建
python
复制代码
#include <iostream>
using namespace std ;
int main (){
int x ; cin >> x ;
while(x--){
scrapy genspider Hello www.educoder.net
}
return 0 ;
}
第2关 Scrapy核心原理
python
复制代码
# -*- coding: utf-8 -*-
import scrapy
class WorldSpider(scrapy.Spider):
name = 'world'
allowed_domains = ['www.baidu.com']
start_urls = ['http://www.baidu.com/']
def parse(self, response):
# ********** Begin *********#
# 将获取网页源码本地持久化
baidu = response.url.split(".")[1] + '.html'
with open(baidu, 'wb') as f:
f.write(response.body)
# ********** End *********#
网页数据解析
第1关 XPath解析网页
python
复制代码
import urllib.request
from lxml import etree
def get_data(url):
'''
:param url: 请求地址
:return: None
'''
response=urllib.request.urlopen(url=url)
html=response.read().decode("utf-8")
# *************** Begin *************** #
parse= etree.HTML(html)
item_list = parse.xpath("//div[@class='left']/ul/li/span/a/text()")
# *************** End ***************** #
print(item_list)
第2关 BeautifulSoup解析网页
python
复制代码
import requests
from bs4 import BeautifulSoup
def get_data(url, headers):
'''
两个参数
:param url:统一资源定位符,请求网址
:param headers:请求头
:return data:list类型的所有古诗内容
'''
# ***************** Begin ******************** #
obj=requests.get(url)
soup=BeautifulSoup(obj.content,"lxml",from_encoding="utf-8")
##data=soup.find("div",class_="left").find('p')
data=soup.find("div",class_='left').ul.find_all("li")
data = [i.p.text for i in data]
# ****************** end ********************* #
return data
requests 爬虫
第1关 requests 基础
python
复制代码
import requests
def get_html(url):
'''
两个参数
:param url:统一资源定位符,请求网址
:param headers:请求头
:return:html
'''
# ***************** Begin ******************** #
# 补充请求头
headers={}
# get请求网页
header={
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36'
}
res= requests.get(url ,headers=header)
res.encoding = 'utf-8'
html=res.text
# 获取网页信息文本
# ***************** End ******************** #
return html
第2关 requests 进阶
python
复制代码
import requests
def get_html(url):
'''
两个参数
:param url:统一资源定位符,请求网址
:param headers:请求头
:return html 网页的源码
:return sess 创建的会话
'''
# ***************** Begin ******************** #
# 补充请求头
headers={
"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36"
}
# 创建Session, 并使用Session的get请求网页
sess = requests.session()
data = {
"name":"hblgysl",
"password":"hblgzsx",
}
res = sess.post(url,headers=headers,data=data)
res1 = sess.get(url)
html=res1.text
# 获取网页信息文本
# ****************** End ********************* #
return html, sess
JSON基础
第1关 JSON篇:JSON基础知识
python
复制代码
{
"students": [
{ "name": "赵昊", "age": 15, "ismale": true },
{ "name": "龙傲天", "age": 16, "ismale": true },
{ "name": "玛丽苏", "age": 15, "ismale": false }
],
"count": 3
}
第2关 JSON篇:使用json库
python
复制代码
import json
def Func():
data = open("step2/2017.txt","r",encoding = "utf-8")
obj = json.load(data)
data.close()
#********** Begin *********#
obj={
"count":4,
"infos":
[
{"name":"赵昊" , "age":16 ,"height": 1.83, "sex" : "男性" },
{"name":"龙傲天" , "age":17 ,"height": 2.00, "sex" : "男性"},
{"name":"玛丽苏" , "age":16 ,"height": 1.78, "sex" : "女性"},
{"name":"叶良辰" , "age":17 ,"height": 1.87, "sex" : "男性"}
]
}
#********** End **********#
output = open("step2/2018.txt","w",encoding = "utf-8")
json.dump(obj,output) #输出到文件
output.close()