Opencv中cv2.calcHist的mask的使用方法

引入

我们用来画直方图函数:

复制代码
cv2.calcHist([img], [0], mask, [256], [0, 256])

有一个mask属性.我们应该如何去使用它呢,以及他的作用是什么

mask顾名思义就是一个遮罩层,我们可以选择图片上我们想要的位置进行画直方图


实际用法介绍

首先我们用一张图片来进行讲解

陶大郎的耳朵!

我们这个时候想要截取耳朵上选定的部分,我们应该怎么做呢?


原理介绍


图中的①操作:

python 复制代码
import cv2
import numpy as np
from matplotlib import pyplot as plt

img =cv2.imread("test.jpg", 0)
# 未选定位置全为黑色
mask = np.zeros(img.shape[:2], np.uint8)
# 选定位置全为白色
mask[50:100, 50:100] = 255

cv2.imshow("mask",mask)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:


图中的②操作

python 复制代码
import cv2
import numpy as np
from matplotlib import pyplot as plt

img =cv2.imread("test.jpg", 0)
mask = np.zeros(img.shape[:2], np.uint8)
mask[50:100, 50:100] = 255
# 新加入
masked_img = cv2.bitwise_and(img,img,mask=mask)
cv2.imshow("masked_img",masked_img)
cv2.waitKey()
cv2.destroyAllWindows()

只在①的基础上加上了 masked_img = cv2.bitwise_and(img,img,mask=mask)

运行结果


使用我们的mask进行直方图绘制

python 复制代码
import cv2
import numpy as np
from matplotlib import pyplot as plt

img =cv2.imread("test.jpg", 0)
# 未选定位置全为黑色
mask = np.zeros(img.shape[:2], np.uint8)
# 选定位置全为白色
mask[50:100, 50:100] = 255
hist = cv2.calcHist([img], [0], mask, [256], [0, 256])
plt.plot(hist, color = 'r')
plt.xlim([0, 256])
plt.show()
复制代码
cv2.calcHist([img], [0], None, [256], [0, 256])变为了
复制代码
cv2.calcHist([img], [0], mask, [256], [0, 256])

我们加上了我们定义的mask

注意:我们把 masked_img = cv2.bitwise_and(img,img,mask=mask) 给去除了,因为在上面我们知识用它来给大家展示效果,在运用到直方图的时候只需要把我们的mask传入进去,就相当于做了这么个效果

相关推荐
AndrewHZ21 小时前
【图像处理基石】如何从色彩的角度分析一张图是否是好图?
图像处理·计算机视觉·cv·聚类算法·色彩科学
用户5191495848451 天前
Go语言AI智能体开发套件(ADK) - 构建复杂AI代理的开源框架
人工智能·aigc
海底的星星fly1 天前
【Prompt学习技能树地图】检索增强生成(RAG)核心技术剖析与实践指南
人工智能·语言模型·prompt
AI研一研1 天前
如何快速学习知识、查找要点、把知识读“薄”、读“精”?
人工智能·学习
北京耐用通信1 天前
不只是延长,是“重生”:耐达讯自动化Profibus总线光端机如何让老旧设备数据“开口说话”?
人工智能·物联网·网络协议·自动化·信息与通信
RWKV元始智能1 天前
体验RWKV-7训练全过程,只需400行代码训练3分钟
人工智能·算法·机器学习
点云SLAM1 天前
四元数 (Quaternion)微分-四元数导数的矩阵表示推导(8)
线性代数·算法·计算机视觉·矩阵·机器人·slam·四元数
qinyia1 天前
Wisdom SSH:AI助手可用的运维工具详解,帮助理解提升人机合作效率
运维·服务器·人工智能·ssh
却道天凉_好个秋1 天前
OpenCV(二十八):双边滤波
人工智能·opencv·计算机视觉