【深度学习PyTorch简介】7.Load and run model predictions 加载和运行模型预测

Load and run model predictions 加载和运行模型预测

Load the model 加载模型

在本单元中,我们将了解如何加载模型及其持久参数状态和推理模型预测。

python 复制代码
%matplotlib inline
import torch
import onnxruntime
from torch import nn
import torch.onnx as onnx
import torchvision.models as models
from torchvision import datasets
from torchvision.transforms import ToTensor

为了加载模型,我们将定义模型类,其中包含用于训练模型的神经网络的状态和参数。

python 复制代码
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
            nn.ReLU(),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

加载模型权重时,我们需要首先实例化模型类,因为该类定义了网络的结构。接下来,我们使用 load_state_dict() 方法加载参数。

python 复制代码
model = NeuralNetwork()
model.load_state_dict(torch.load('data/model.pth'))
model.eval()
复制代码
NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
    (5): ReLU()
  )
)

**注意:**请务必在推理之前调用 model.eval() 方法,以将 dropout 和批量归一化层设置为评估模式。否则,您将看到不一致的推理结果。

Model Inference 模型推理

优化模型以在各种平台和编程语言上运行是很困难的。在所有不同的框架和硬件组合中最大限度地提高性能非常耗时。Open Neural Network Exchange (ONNX) 开放神经网络交换运行时为您提供了一种解决方案,可在任何硬件、云或边缘设备上进行一次训练并加速推理。

ONNX 是许多供应商支持的通用格式,用于共享神经网络和其他机器学习模型。您可以使用 ONNX 格式在其他编程语言(Java, JavaScript, C# 和 ML.NET)和框架上对模型进行推理。

Exporting the model to ONNX 将模型导出到 ONNX

PyTorch 还具有本机 ONNX 导出支持。然而,考虑到 PyTorch 执行图的动态特性,导出过程必须遍历执行图以生成持久的 ONNX 模型。因此,应将适当大小的测试变量传递到导出例程中(在我们的例子中,我们将创建正确大小的虚拟零张量。您可以从训练数据集的shape函数中获取大小:tensor.shape):

python 复制代码
input_image = torch.zeros((1,28,28))
onnx_model = 'data/model.onnx'
onnx.export(model, input_image, onnx_model)

我们将使用测试数据集作为示例数据,从 ONNX 模型进行推理以进行预测。

python 复制代码
test_data = datasets.FashionMNIST(
    root = "data",
    train = False,
    download = True,
    transform = ToTensor()
)

classes = [
    "T-shirt/top",
    "Trouser",
    "Pullover",
    "Dress",
    "Coat",
    "Sandal",
    "Shirt",
    "Sneaker",
    "Bag",
    "Ankle boot",
]

x, y = test_data[0][0], test_data[0][1]

我们使用 onnxruntime.InferenceSession 创建推理会话。要推断 ONNX 模型,请调用 run 并传入您想要返回的输出列表(如果您需要所有输出,请保留为空)和输入值的映射。结果是输出列表。

python 复制代码
session = onnxruntime.InferenceSession(onnx_model, None)
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name

result = session.run([output_name], {input_name:x.numpy()})
predicted, actual = classes[result[0][0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: {actual}')
复制代码
Predicted: "Ankle boot", Actual: Ankle boot

ONNX 模型使您能够在不同平台上以不同编程语言运行推理。

知识检查

什么是 PyTorch 模型 state_dict?

它是模型的内部状态字典,用于存储已学习的参数。

相关推荐
猫头虎5 分钟前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体Agent快速构建工具:FastbuildAI
人工智能·开源·github·aigc·ai编程·ai写作·ai-native
新智元21 分钟前
AI 版华尔街之狼!o3-mini 靠「神之押注」狂赚 9 倍,DeepSeek R1 最特立独行
人工智能·openai
天下弈星~30 分钟前
GANs生成对抗网络生成手写数字的Pytorch实现
人工智能·pytorch·深度学习·神经网络·生成对抗网络·gans
重启的码农40 分钟前
ggml介绍 (8) 图分配器 (ggml_gallocr)
c++·人工智能·神经网络
重启的码农42 分钟前
ggml介绍 (9) 后端调度器 (ggml_backend_sched)
c++·人工智能·神经网络
aneasystone本尊43 分钟前
学习 Coze Studio 的智能体执行逻辑
人工智能
盏灯1 小时前
Trae SOLO 游戏 —— 🐾🐱🐾猫咪追蝌蚪🐸
人工智能·trae
lisuwen1161 小时前
AI三国杀:马斯克炮轰苹果“偏袒”OpenAI,Grok与ChatGPT的应用商店战争揭秘
人工智能·chatgpt
暮小暮1 小时前
从ChatGPT到智能助手:Agent智能体如何颠覆AI应用
人工智能·深度学习·神经网络·ai·语言模型·chatgpt
聚客AI1 小时前
✅响应时间从8秒到3秒:AI知识库性能优化避坑指南
人工智能·llm·agent