Flink处理函数(2)—— 按键分区处理函数

按键分区处理函数(KeyedProcessFunction):先进行分区,然后定义处理操作

1.定时器(Timer)和定时服务(TimerService)

  • 定时器(timers)是处理函数中进行时间相关操作的主要机制
  • 定时服务(TimerService)提供了注册定时器的功能

TimerService 是 Flink 关于时间和定时器的基础服务接口:

java 复制代码
// 获取当前的处理时间
long currentProcessingTime();
// 获取当前的水位线(事件时间)
long currentWatermark();
// 注册处理时间定时器,当处理时间超过 time 时触发
void registerProcessingTimeTimer(long time);
// 注册事件时间定时器,当水位线超过 time 时触发
void registerEventTimeTimer(long time);
// 删除触发时间为 time 的处理时间定时器
void deleteProcessingTimeTimer(long time);
// 删除触发时间为 time 的事件时间定时器
void deleteEventTimeTimer(long time);

六个方法可以分成两大类:基于处理时间和基于事件时间。而对应的操作主要有三个:获取当前时间,注册定时器,以及删除定时器

尽管处理函数中都可以直接访问TimerService,不过只有基于 KeyedStream 的处理函数,才能去调用注册和删除定时器的方法;未作按键分区的 DataStream 不支持定时器操作,只能获取当前时间

对于处理时间和事件时间这两种类型的定时器,TimerService 内部会用一个优先队列 将它们的时间戳保存起来,排队等待执行;可以认为,定时器其实是 KeyedStream上处理算子的一个状态,它以时间戳作为区分。所以 TimerService 会以键(key)和时间戳为标准,对定时器进行去重;也就是说对于每个 key 和时间戳,最多只有一个定时器,如果注册了多次,onTimer()方法也将只被调用一次

基于 KeyedStream 注册定时器时,会传入一个定时器触发的时间戳 ,这个时间戳的定时器对于每个 key 都是有效的; 利用这个特性,有时我们可以故意降低时间戳的精度 ,来减少定时器的数量,从而提高处理性能。比如我们可以在设置定时器时只保留整秒数,那么定时器的触发频率就是最多 1 秒一次:

java 复制代码
long coalescedTime = time / 1000 * 1000; //时间戳(定时器默认的区分精度是毫秒)
ctx.timerService().registerProcessingTimeTimer(coalescedTime); //注册定时器

2.KeyedProcessFunction 的使用

基础用法:

java 复制代码
stream.keyBy( t -> t.f0 ).process(new MyKeyedProcessFunction())

这里的MyKeyedProcessFunction即是KeyedProcessFunction的一个实现类;

源码解析

KeyedProcessFunction源码如下:

java 复制代码
public abstract class KeyedProcessFunction<K, I, O> extends AbstractRichFunction {

    private static final long serialVersionUID = 1L;

    /**
     * Process one element from the input stream.
     *
     * <p>This function can output zero or more elements using the {@link Collector} parameter and
     * also update internal state or set timers using the {@link Context} parameter.
     *
     * @param value The input value.
     * @param ctx A {@link Context} that allows querying the timestamp of the element and getting a
     *     {@link TimerService} for registering timers and querying the time. The context is only
     *     valid during the invocation of this method, do not store it.
     * @param out The collector for returning result values.
     * @throws Exception This method may throw exceptions. Throwing an exception will cause the
     *     operation to fail and may trigger recovery.
     */
    public abstract void processElement(I value, Context ctx, Collector<O> out) throws Exception;

    /**
     * Called when a timer set using {@link TimerService} fires.
     *
     * @param timestamp The timestamp of the firing timer.
     * @param ctx An {@link OnTimerContext} that allows querying the timestamp, the {@link
     *     TimeDomain}, and the key of the firing timer and getting a {@link TimerService} for
     *     registering timers and querying the time. The context is only valid during the invocation
     *     of this method, do not store it.
     * @param out The collector for returning result values.
     * @throws Exception This method may throw exceptions. Throwing an exception will cause the
     *     operation to fail and may trigger recovery.
     */
    public void onTimer(long timestamp, OnTimerContext ctx, Collector<O> out) throws Exception {}

    /**
     * Information available in an invocation of {@link #processElement(Object, Context, Collector)}
     * or {@link #onTimer(long, OnTimerContext, Collector)}.
     */
    public abstract class Context {

        /**
         * Timestamp of the element currently being processed or timestamp of a firing timer.
         *
         * <p>This might be {@code null}, for example if the time characteristic of your program is
         * set to {@link org.apache.flink.streaming.api.TimeCharacteristic#ProcessingTime}.
         */
        public abstract Long timestamp();

        /** A {@link TimerService} for querying time and registering timers. */
        public abstract TimerService timerService();

        /**
         * Emits a record to the side output identified by the {@link OutputTag}.
         *
         * @param outputTag the {@code OutputTag} that identifies the side output to emit to.
         * @param value The record to emit.
         */
        public abstract <X> void output(OutputTag<X> outputTag, X value);

        /** Get key of the element being processed. */
        public abstract K getCurrentKey();
    }

    /**
     * Information available in an invocation of {@link #onTimer(long, OnTimerContext, Collector)}.
     */
    public abstract class OnTimerContext extends Context {
        /** The {@link TimeDomain} of the firing timer. */
        public abstract TimeDomain timeDomain();

        /** Get key of the firing timer. */
        @Override
        public abstract K getCurrentKey();
    }
}

可以看到和ProcessFunction类似,都有一个processElement()onTimer()方法,并且定义了一个Context抽象类;不同点在于类型参数多了一个K,也就是key的类型;

代码示例

①处理时间语义

java 复制代码
public class ProcessingTimeTimerTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 处理时间语义,不需要分配时间戳和watermark
        SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource());

        // 要用定时器,必须基于KeyedStream
        stream.keyBy(data -> true)
                .process(new KeyedProcessFunction<Boolean, Event, String>() {
                    @Override
                    public void processElement(Event value, Context ctx, Collector<String> out) throws Exception {
                        Long currTs = ctx.timerService().currentProcessingTime();
                        out.collect("数据到达,到达时间:" + new Timestamp(currTs));
                        // 注册一个10秒后的定时器
                        ctx.timerService().registerProcessingTimeTimer(currTs + 10 * 1000L);
                    }

                    @Override
                    public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
                        out.collect("定时器触发,触发时间:" + new Timestamp(timestamp));
                    }
                })
                .print();

        env.execute();
    }
}

通过ctx.timerService().currentProcessingTime()获取当前处理时间;

通过ctx.timerService().registerProcessingTimeTimer来设置一个定时器;

运行结果如下:

由于定时器是处理时间的定时器,不用考虑水位线延时问题,因此10s后能够准时触发定时操作;


②事件时间语义:

java 复制代码
public class EventTimeTimerTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        SingleOutputStreamOperator<Event> stream = env.addSource(new CustomSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        }));

        // 基于KeyedStream定义事件时间定时器
        stream.keyBy(data -> true)
                .process(new KeyedProcessFunction<Boolean, Event, String>() {
                    @Override
                    public void processElement(Event value, Context ctx, Collector<String> out) throws Exception {
                        out.collect("数据到达,时间戳为:" + ctx.timestamp());
                        out.collect("数据到达,水位线为:" + ctx.timerService().currentWatermark() + "\n -------分割线-------");
                        // 注册一个10秒后的定时器
                        ctx.timerService().registerEventTimeTimer(ctx.timestamp() + 10 * 1000L);
                    }

                    @Override
                    public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
                        out.collect("定时器触发,触发时间:" + timestamp);
                    }
                })
                .print();

        env.execute();
    }

    // 自定义测试数据源
    public static class CustomSource implements SourceFunction<Event> {
        @Override
        public void run(SourceContext<Event> ctx) throws Exception {
            // 直接发出测试数据
            ctx.collect(new Event("Mary", "./home", 1000L));
            // 为了更加明显,中间停顿5秒钟
            Thread.sleep(5000L);

            // 发出10秒后的数据
            ctx.collect(new Event("Mary", "./home", 11000L));
            Thread.sleep(5000L);

            // 发出10秒+1ms后的数据
            ctx.collect(new Event("Alice", "./cart", 11001L));
            Thread.sleep(5000L);
        }

        @Override
        public void cancel() { }
    }
}

运行结果如下:

运行结果解释:

①第一条数据到来时,时间戳为1000,但由于水位线的生成是周期性的(默认200ms),因此水位线不会立即发送改变,仍然是Long.MIN_VALUE,之后只要到了水位线生成的时间周期,就会依据当前最大的时间戳来生成水位线(默认减1)

②第二条数据到来时,显然水位线已经推进到了999,但仍然不会立即改变;

③在事件时间语义下,定时器触发的条件就是水位线推进到设定的时间;第一条数据到来之后,设定的定时器时间为11000,而当时间戳为11000的数据到来时,水位线还停留在999的位置,因此不会立即触发定时器;之后水位线会推进到10999(11000-1),同样无法触发定时器;

④第三条数据到来时,时间戳为11001,此时水位线推进到了10999,等到水位线周期性更新后,推进到11000(11001-1),这样第一个定时器就会触发

⑤然后等待5s后,没有新的数据到来,整个程序结束,将要退出,此时会将水位线推进到Long.MAX_VALUE,所以所有没有触发的定时器统一触发;

学习课程链接:【尚硅谷】Flink1.13实战教程(涵盖所有flink-Java知识点)_哔哩哔哩_bilibili

相关推荐
云云3212 小时前
怎么通过亚矩阵云手机实现营销?
大数据·服务器·安全·智能手机·矩阵
新加坡内哥谈技术2 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
Data-Miner3 小时前
经典案例PPT | 大型水果连锁集团新零售数字化建设方案
大数据·big data
lovelin+v175030409663 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
道一云黑板报3 小时前
Flink集群批作业实践:七析BI批作业执行
大数据·分布式·数据分析·flink·kubernetes
darkdragonking3 小时前
OpenEuler 22.03 安装 flink-1.17.2 集群
flink·openeuler
core5123 小时前
flink sink kafka
flink·kafka·sink
节点。csn4 小时前
flink集群搭建 详细教程
大数据·服务器·flink
goTsHgo4 小时前
Flink 的并行度配置低于Kafka 分区数会出现的问题
flink
数据爬坡ing4 小时前
小白考研历程:跌跌撞撞,起起伏伏,五个月备战历程!!!
大数据·笔记·考研·数据分析