Leetcode1143. 最长公共子序列

解题思路

求两个数组或者字符串的最长公共子序列问题,肯定是要用动态规划的。下面的题解并不难,你肯定能看懂。

首先,区分两个概念:子序列可以是不连续的;子数组(子字符串)需要是连续的;

另外,动态规划也是有套路的:单个数组或者字符串要用动态规划时,可以把动态规划 dp[i] 定义为 nums[0:i] 中想要求的结果;当两个数组或者字符串要用动态规划时,可以把动态规划定义成两维的 dp[i][j] ,其含义是在 A[0:i] 与 B[0:j] 之间匹配得到的想要的结果。

  1. 状态定义

比如对于本题而言,可以定义 dp[i][j] 表示 text1[0:i-1] 和 text2[0:j-1] 的最长公共子序列。 (注:text1[0:i-1] 表示的是 text1 的 第 0 个元素到第 i - 1 个元素,两端都包含)

之所以 dp[i][j] 的定义不是 text1[0:i] 和 text2[0:j] ,是为了方便当 i = 0 或者 j = 0 的时候,dp[i][j]表示的为空字符串和另外一个字符串的匹配,这样 dp[i][j] 可以初始化为 0.

  1. 状态转移方程

知道状态定义之后,我们开始写状态转移方程。

当 text1[i - 1] == text2[j - 1] 时,说明两个子字符串的最后一位相等,所以最长公共子序列又增加了 1,所以 dp[i][j] = dp[i - 1][j - 1] + 1;举个例子,比如对于 ac 和 bc 而言,他们的最长公共子序列的长度等于 a 和 b 的最长公共子序列长度 0 + 1 = 1。

当 text1[i - 1] != text2[j - 1] 时,说明两个子字符串的最后一位不相等,那么此时的状态 dp[i][j] 应该是 dp[i - 1][j] 和 dp[i][j - 1] 的最大值。举个例子,比如对于 ace 和 bc 而言,他们的最长公共子序列的长度等于 ① ace 和 b 的最长公共子序列长度0 与 ② ac 和 bc 的最长公共子序列长度1 的最大值,即 1。

综上状态转移方程为:

dp[i][j]=dp[i−1][j−1]+1dp[i][j] = dp[i - 1][j - 1] + 1dp[i][j]=dp[i−1][j−1]+1, 当 text1[i−1]==text2[j−1];text1[i - 1] == text2[j - 1];text1[i−1]==text2[j−1];

dp[i][j]=max(dp[i−1][j],dp[i][j−1])dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])dp[i][j]=max(dp[i−1][j],dp[i][j−1]), 当 text1[i−1]!=text2[j−1]text1[i - 1] != text2[j - 1]text1[i−1]!=text2[j−1]

  1. 状态的初始化

初始化就是要看当 i = 0 与 j = 0 时, dp[i][j] 应该取值为多少。

当 i = 0 时,dp[0][j] 表示的是 text1text1text1 中取空字符串 跟 text2text2text2 的最长公共子序列,结果肯定为 0.

当 j = 0 时,dp[i][0] 表示的是 text2text2text2 中取空字符串 跟 text1text1text1 的最长公共子序列,结果肯定为 0.

综上,当 i = 0 或者 j = 0 时,dp[i][j] 初始化为 0.

  1. 遍历方向与范围

由于 dp[i][j] 依赖与 dp[i - 1][j - 1] , dp[i - 1][j], dp[i][j - 1],所以 iii 和 jjj 的遍历顺序肯定是从小到大的。

另外,由于当 iii 和 jjj 取值为 0 的时候,dp[i][j] = 0,而 dp 数组本身初始化就是为 0,所以,直接让 iii 和 jjj 从 1 开始遍历。遍历的结束应该是字符串的长度为 len(text1)len(text1)len(text1) 和 len(text2)len(text2)len(text2)。

  1. 最终返回结果

由于 dp[i][j] 的含义是 text1[0:i-1] 和 text2[0:j-1] 的最长公共子序列。我们最终希望求的是 text1 和 text2 的最长公共子序列。所以需要返回的结果是 i = len(text1) 并且 j = len(text2) 时的 dp[len(text1)][len(text2)]。

代码如下:

java 复制代码
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length();
        int n = text2.length();
        int[][] dp = new int[m+1][n+1];
        for(int i = 1; i <= m;i++){
            for(int j = 1; j <= n;j++){
                if(text1.charAt(i-1) == text2.charAt(j-1)){
                    dp[i][j] = dp[i-1][j-1]+1;
                }
                else{
                    dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
                }
                
            }
        }
        return dp[m][n];

    }
}

力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

相关推荐
千天夜7 小时前
多源多点路径规划:基于启发式动态生成树算法的实现
算法·机器学习·动态规划
.Vcoistnt7 小时前
Codeforces Round 994 (Div. 2)(A-D)
数据结构·c++·算法·贪心算法·动态规划
虽千万人 吾往矣1 天前
golang LeetCode 热题 100(动态规划)-更新中
算法·leetcode·动态规划
HUT_Tyne2651 天前
力扣--LCR 53.最大数组和
算法·leetcode·动态规划
苓诣2 天前
不同路径
动态规划
nuyoah♂2 天前
DAY36|动态规划Part04|LeetCode:1049. 最后一块石头的重量 II、494. 目标和、474.一和零
算法·leetcode·动态规划
Colinnian3 天前
Codeforces Round 994 (Div. 2)-D题
算法·动态规划
დ旧言~3 天前
专题八:背包问题
算法·leetcode·动态规划·推荐算法
林辞忧3 天前
动态规划<四> 回文串问题(含对应LeetcodeOJ题)
动态规划
闻缺陷则喜何志丹3 天前
【C++动态规划 图论】3243. 新增道路查询后的最短距离 I|1567
c++·算法·动态规划·力扣·图论·最短路·路径