目录
-
- [1. PriorityQueue中插入对象](#1. PriorityQueue中插入对象)
- [2. 元素的比较](#2. 元素的比较)
-
- [2.1 基本类型的比较](#2.1 基本类型的比较)
- [2.2 对象比较的问题](#2.2 对象比较的问题)
- [3. 对象的比较](#3. 对象的比较)
-
- [3.1 基于Comparable接口类的比较](#3.1 基于Comparable接口类的比较)
- [3.2 基于比较器比较](#3.2 基于比较器比较)
- [3.3 三种方式对比](#3.3 三种方式对比)
- [4. 集合框架中PriorityQueue的比较方式](#4. 集合框架中PriorityQueue的比较方式)
- [5. 使用PriorityQueue创建大小堆,解决TOPK问题](#5. 使用PriorityQueue创建大小堆,解决TOPK问题)
【本节目标】
- Java中对象的比较
- 集合框架中PriorityQueue的比较方式
- 模拟实现PriorityQueue
1. PriorityQueue中插入对象
优先级队列在插入元素时有个要求:插入的元素不能是null或者元素之间必须要能够进行比较,为了简单起见,我们只是插入了Integer类型,那优先级队列中能否插入自定义类型对象呢
java
class Card {
public int rank; // 数值
public String suit; // 花色
public Card(int rank, String suit) {
this.rank = rank;
this.suit = suit;
}
}
public class TestPriorityQueue {
public static void TestPriorityQueue()
{
PriorityQueue<Card> p = new PriorityQueue<>();
p.offer(new Card(1, "♠"));
p.offer(new Card(2, "♠"));
}
public static void main(String[] args) {
TestPriorityQueue();
}
}
优先级队列底层使用堆,而向堆中插入元素时,为了满足堆的性质,必须要进行元素的比较,而此时Card是没有办法直接进行比较的,因此抛出异常
2. 元素的比较
2.1 基本类型的比较
在Java中,基本类型的对象可以直接比较大小
java
public class TestCompare {
public static void main(String[] args) {
int a = 10;
int b = 20;
System.out.println(a > b);
System.out.println(a < b);
System.out.println(a == b);
char c1 = 'A';
char c2 = 'B';
System.out.println(c1 > c2);
System.out.println(c1 < c2);
System.out.println(c1 == c2);
boolean b1 = true;
boolean b2 = false;
System.out.println(b1 == b2);
System.out.println(b1 != b2);
}
}
2.2 对象比较的问题
java
class Card {
public int rank; // 数值
public String suit; // 花色
public Card(int rank, String suit) {
this.rank = rank;
this.suit = suit;
}
}
public class TestPriorityQueue {
public static void main(String[] args) {
Card c1 = new Card(1, "♠");
Card c2 = new Card(2, "♠");
Card c3 = c1;
//System.out.println(c1 > c2); // 编译报错
System.out.println(c1 == c2); // 编译成功 ----> 打印false,因为c1和c2指向的是不同对象
//System.out.println(c1 < c2); // 编译报错
System.out.println(c1 == c3); // 编译成功 ----> 打印true,因为c1和c3指向的是同一个对象
}
}
从编译结果可以看出,Java中引用类型的变量不能直接按照 > 或者 < 方式进行比较。 那为什么==可以比较?
因为:对于用户实现自定义类型,都默认继承自 Object类,而 Object类中提供了 equal方法,而 ==默认情况下调用的就是 equal方法 ,但是该方法的比较规则是:没有比较引用变量引用对象的内容,而是直接比较引用变量的地址,但有些情况下该种比较就不符合题意。
java
// Object中equal的实现,可以看到:直接比较的是两个引用变量的地址
public boolean equals(Object obj) {
return (this == obj);
}
3. 对象的比较
有些情况下,需要比较的是对象中的内容,比如:向优先级队列中插入某个对象时,需要对按照对象中内容来调整堆,那该如何处理呢
java
public class Card {
public int rank; // 数值
public String suit; // 花色
public Card(int rank, String suit) {
this.rank = rank;
this.suit = suit;
}
@Override
public boolean equals(Object o) {
// 自己和自己比较
if (this == o) {
return true;
}
// o如果是null对象,或者o不是Card的子类
if (o == null || !(o instanceof Card)) {
return false;
}
// 注意基本类型可以直接比较,但引用类型最好调用其equal方法
Card c = (Card)o;
return this.rank == c.rank && suit.equals(c.suit);
}
}
注意: 一般覆写 equals 的套路就是上面演示的
- 如果指向同一个对象,返回 true
- 如果传入的为 null,返回 false
- 如果传入的对象类型不是 Card,返回 false
- 按照类的实现目标完成比较,例如这里只要花色和数值一样,就认为是相同的牌
- 注意调用其他引用类型的比较也需要 equals,例如这里的 suit 的比较
覆写基类equal的方式虽然可以比较,但缺陷是:equal只能按照相等进行比较,不能按照大于、小于的方式进行比较。
3.1 基于Comparable接口类的比较
Comparable是JDK提供的泛型的比较接口类,源码实现具体如下
java
public interface Comparable<E> {
// 返回值:
// < 0: 表示 this 指向的对象小于 o 指向的对象
// == 0: 表示 this 指向的对象等于 o 指向的对象
// > 0: 表示 this 指向的对象大于 o 指向的对象
int compareTo(E o);
}
对用用户自定义类型,如果要想按照大小与方式进行比较时:在定义类时,实现Comparable接口即可,然后在类中重写compareTo方法
java
public class Card implements Comparable<Card> {
public int rank; // 数值
public String suit; // 花色
public Card(int rank, String suit) {
this.rank = rank;
this.suit = suit;
}
// 根据数值比较,不管花色
// 这里我们认为 null 是最小的
@Override
public int compareTo(Card o) {
if (o == null) {
return 1;
}
return rank - o.rank;
}
public static void main(String[] args){
Card p = new Card(1, "♠");
Card q = new Card(2, "♠");
Card o = new Card(1, "♠");
System.out.println(p.compareTo(o)); // == 0,表示牌相等
System.out.println(p.compareTo(q)); // < 0,表示 p 比较小
System.out.println(q.compareTo(p)); // > 0,表示 q 比较大
}
}
Comparable是java.lang中的接口类,可以直接使用
3.2 基于比较器比较
按照比较器方式进行比较,具体步骤如下
-
用户自定义比较器类,实现Comparator接口
javapublic interface Comparator<T> { // 返回值: // < 0: 表示 o1 指向的对象小于 o2 指向的对象 // == 0: 表示 o1 指向的对象等于 o2 指向的对象 // > 0: 表示 o1 指向的对象等于 o2 指向的对象 int compare(T o1, T o2); }
注意:区分Comparable和Comparator
-
覆写Comparator中的compare方法
javaimport java.util.Comparator; class Card { public int rank; // 数值 public String suit; // 花色 public Card(int rank, String suit) { this.rank = rank; this.suit = suit; } } class CardComparator implements Comparator<Card> { // 根据数值比较,不管花色 // 这里我们认为 null 是最小的 @Override public int compare(Card o1, Card o2) { if (o1 == o2) { return 0; } if(o1 == null) { return -1; } if (o2 == null) { return 1; } return o1.rank - o2.rank; } public static void main(String[] args){ Card p = new Card(1, "♠"); Card q = new Card(2, "♠"); Card o = new Card(1, "♠"); // 定义比较器对象 CardComparator cmptor = new CardComparator(); // 使用比较器对象进行比较 System.out.println(cmptor.compare(p, o)); // == 0,表示牌相等 System.out.println(cmptor.compare(p, q)); // < 0,表示 p 比较小 System.out.println(cmptor.compare(q, p)); // > 0,表示 q 比较大 } }
注意:Comparator是java.util 包中的泛型接口类,使用时必须导入对应的包
3.3 三种方式对比
覆写的方法 | 说明 |
---|---|
Object.equals | 因为所有类都是继承自 Object 的,所以直接覆写即可,不过只能比较相等与否 |
Comparable.compareTo | 需要手动实现接口,侵入性比较强,但一旦实现,每次用该类都有顺序,属于内部顺序 |
Comparator.compare | 需要实现一个比较器对象,对待比较类的侵入性弱,但对算法代码实现侵入性强 |
4. 集合框架中PriorityQueue的比较方式
集合框架中的PriorityQueue底层使用堆结构,因此其内部的元素必须要能够比大小,PriorityQueue采用了: Comparable和Comparator两种方式
- Comparable是默认的内部比较方式,如果用户插入自定义类型对象时,该类对象必须要实现Comparable接口,并覆写compareTo方法
- 用户也可以选择使用比较器对象,如果用户插入自定义类型对象时,必须要提供一个比较器类,让该类实现Comparator接口并覆写compare方法
java
// JDK中PriorityQueue的实现:
public class PriorityQueue<E> extends AbstractQueue<E> implements java.io.Serializable {
// ...
// 默认容量
private static final int DEFAULT_INITIAL_CAPACITY = 11;
// 内部定义的比较器对象,用来接收用户实例化PriorityQueue对象时提供的比较器对象
private final Comparator<? super E> comparator;
// 用户如果没有提供比较器对象,使用默认的内部比较,将comparator置为null
public PriorityQueue() {
this(DEFAULT_INITIAL_CAPACITY, null);
}
// 如果用户提供了比较器,采用用户提供的比较器进行比较
public PriorityQueue(int initialCapacity, Comparator<? super E> comparator) {
// Note: This restriction of at least one is not actually needed,
// but continues for 1.5 compatibility
if (initialCapacity < 1)
throw new IllegalArgumentException();
this.queue = new Object[initialCapacity];
this.comparator = comparator;
}
// ...
// 向上调整:
// 如果用户没有提供比较器对象,采用Comparable进行比较
// 否则使用用户提供的比较器对象进行比较
private void siftUp(int k, E x) {
if (comparator != null)
siftUpUsingComparator(k, x);
else
siftUpComparable(k, x);
}
// 使用Comparable
@SuppressWarnings("unchecked")
private void siftUpComparable(int k, E x) {
Comparable<? super E> key = (Comparable<? super E>) x;
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = queue[parent];
if (key.compareTo((E) e) >= 0)
break;
queue[k] = e;
k = parent;
}
queue[k] = key;
}
// 使用用户提供的比较器对象进行比较
@SuppressWarnings("unchecked")
private void siftUpUsingComparator(int k, E x) {
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = queue[parent];
if (comparator.compare(x, (E) e) >= 0)
break;
queue[k] = e;
k = parent;
}
queue[k] = x;
}
}
5. 使用PriorityQueue创建大小堆,解决TOPK问题
java
//使用比较器创建小根堆
class LessIntComp implements Comparator<Integer>{
@Override
public int compare(Integer o1, Integer o2) {
return o1 - o2;
}
}
//使用比较器创建大根堆
class GreaterIntComp implements Comparator<Integer>{
@Override
public int compare(Integer o1, Integer o2) {
return o2 - o1;
}
}
public class TestDemo<E> {
//求最小的K个数,通过比较器创建大根堆
public static int[] smallestK(int[] array, int k) {
if(k <= 0) {
return null;
}
GreaterIntComp greaterCmp = new GreaterIntComp();
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(greaterCmp);
//先将前K个元素,创建大根堆
for(int i = 0; i < k; i++) {
maxHeap.offer(array[i]);
}
//从第K+1个元素开始,每次和堆顶元素比较
for (int i = k; i < array.length; i++) {
int top = maxHeap.peek();
if(array[i] < top) {
maxHeap.poll();
maxHeap.offer(array[i]);
}
}
//取出前K个
int[] ret = new int[k];
for (int i = 0; i < k; i++) {
int val = maxHeap.poll();
ret[i] = val;
}
return ret;
}
public static void main(String[] args) {
int[] array = {4,1,9,2,8,0,7,3,6,5};
int[] ret = smallestK(array,3);
System.out.println(Arrays.toString(ret));
}
}