金融OCR领域实习日志(二)——四种OCR模型效果测试(附图)

文章目录

四种模型ocr效果简单测试

模型

PP-OCRv3、ppocr_server_v2、CnOCR、TesseractOCR

场景

发票(扫描件)、表格扫描件

1.paddle框架下PP-OCRv3

使用轻量级模型PP-OCRv3

1.1.效果如下:

1号表格扫描件==(时间2.13s)==:

1号发票==(时间1.7s)==

2号发票扫描件==(时间2.36s)==

1.2.总结

表格扫描件:效果一切良好

发票实拍:有部分模糊文字识别不清,图片太糊了

发票扫描件:效果良好,但是特殊字符无法识别,后续补充训练可以解决

2.paddle框架下ppocr_server_v2

使用通用模型PP-OCRv3

2.1.效果如下

1号发票

2.2.总结

效果太差不试了

3.CnOCR

这里ocr参数全部设置默认

3.1.效果如下

1号表格扫描件:

1号发票:

3.2.总结

比起paddle中文模型,有较大差距

表格问题较小,但比如"牡"丹识别成了"社"丹

发票比较模糊,问题很多,比如联合识别成联音,公司识别成公碍等错误

特殊字符也同paddle一样无法识别,识别成了8,不过可以补充训练

4.TesseractOCR

4.1.效果如下

1号表格:

1号发票:

4.2.总结

中文识别一团浆糊,完全不能用

5.后续想法

基于paddle2.6发布的版本,PP-OCRv3表现最好,也是百度最新的OCR中文检测识别模型(paddle2.7下的v4没测),百度通用模型的效果相比而言差了很多。CnOCR比paddle差距明显,特别是模糊图片,Tesseract在中文场景下则是完全不能用。

此外,由于发票文档分布非常复杂,导致大部分识别模型无法对齐,但由于发票的模板非常固定,可以通过坐标变换先调整发票摆正,再裁剪图片喂给模型识别,以此来控制各个识别区域,避免文字错位。

相关推荐
计算机小白一个20 分钟前
蓝桥杯 Java B 组之设计 LRU 缓存
java·算法·蓝桥杯
万事可爱^1 小时前
HDBSCAN:密度自适应的层次聚类算法解析与实践
算法·机器学习·数据挖掘·聚类·hdbscan
失败尽常态5233 小时前
用Python实现Excel数据同步到飞书文档
python·excel·飞书
2501_904447743 小时前
OPPO发布新型折叠屏手机 起售价8999
python·智能手机·django·virtualenv·pygame
青龙小码农3 小时前
yum报错:bash: /usr/bin/yum: /usr/bin/python: 坏的解释器:没有那个文件或目录
开发语言·python·bash·liunx
大数据追光猿3 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Dream it possible!3 小时前
LeetCode 热题 100_在排序数组中查找元素的第一个和最后一个位置(65_34_中等_C++)(二分查找)(一次二分查找+挨个搜索;两次二分查找)
c++·算法·leetcode
夏末秋也凉3 小时前
力扣-回溯-46 全排列
数据结构·算法·leetcode
南宫生3 小时前
力扣每日一题【算法学习day.132】
java·学习·算法·leetcode
柠石榴3 小时前
【练习】【回溯No.1】力扣 77. 组合
c++·算法·leetcode·回溯