金融OCR领域实习日志(二)——四种OCR模型效果测试(附图)

文章目录

四种模型ocr效果简单测试

模型

PP-OCRv3、ppocr_server_v2、CnOCR、TesseractOCR

场景

发票(扫描件)、表格扫描件

1.paddle框架下PP-OCRv3

使用轻量级模型PP-OCRv3

1.1.效果如下:

1号表格扫描件==(时间2.13s)==:

1号发票==(时间1.7s)==

2号发票扫描件==(时间2.36s)==

1.2.总结

表格扫描件:效果一切良好

发票实拍:有部分模糊文字识别不清,图片太糊了

发票扫描件:效果良好,但是特殊字符无法识别,后续补充训练可以解决

2.paddle框架下ppocr_server_v2

使用通用模型PP-OCRv3

2.1.效果如下

1号发票

2.2.总结

效果太差不试了

3.CnOCR

这里ocr参数全部设置默认

3.1.效果如下

1号表格扫描件:

1号发票:

3.2.总结

比起paddle中文模型,有较大差距

表格问题较小,但比如"牡"丹识别成了"社"丹

发票比较模糊,问题很多,比如联合识别成联音,公司识别成公碍等错误

特殊字符也同paddle一样无法识别,识别成了8,不过可以补充训练

4.TesseractOCR

4.1.效果如下

1号表格:

1号发票:

4.2.总结

中文识别一团浆糊,完全不能用

5.后续想法

基于paddle2.6发布的版本,PP-OCRv3表现最好,也是百度最新的OCR中文检测识别模型(paddle2.7下的v4没测),百度通用模型的效果相比而言差了很多。CnOCR比paddle差距明显,特别是模糊图片,Tesseract在中文场景下则是完全不能用。

此外,由于发票文档分布非常复杂,导致大部分识别模型无法对齐,但由于发票的模板非常固定,可以通过坐标变换先调整发票摆正,再裁剪图片喂给模型识别,以此来控制各个识别区域,避免文字错位。

相关推荐
陌路2012 分钟前
S15 排序算法--归并排序
数据结构·算法·排序算法
智者知已应修善业13 分钟前
【c# 想一句话把 List<List<string>>的元素合并成List<string>】2023-2-9
经验分享·笔记·算法·c#·list
B站_计算机毕业设计之家31 分钟前
深度学习:python人脸表情识别系统 情绪识别系统 深度学习 神经网络CNN算法 ✅
python·深度学习·神经网络·算法·yolo·机器学习·cnn
星释1 小时前
Rust 练习册 :Luhn Trait与Trait实现
网络·算法·rust
合作小小程序员小小店1 小时前
web网页开发,在线%聚类,微博,舆情%系统,基于python,pycharm,django,nlp,kmeans,mysql
python·pycharm·kmeans·聚类·sklearn·kmean
Dan.Qiao1 小时前
python读文件readline和readlines区别和惰性读
开发语言·python·惰性读文件
ゞ 正在缓冲99%…1 小时前
leetcode1770.执行乘法运算的最大分数
java·数据结构·算法·动态规划
abcefg_h1 小时前
链表算法---基本算法操作(go语言版)
算法·链表·golang
小O的算法实验室1 小时前
2022年IEEE TITS SCI2区TOP,基于切线交点和目标引导策略的无人机自主路径规划,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
闲人编程2 小时前
将你的旧手机变成监控摄像头(Python + OpenCV)
python·opencv·智能手机·监控·codecapsule·oasis